ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.08312
  4. Cited By
Disordered Systems Insights on Computational Hardness

Disordered Systems Insights on Computational Hardness

15 October 2022
D. Gamarnik
Cristopher Moore
Lenka Zdeborová
    AI4CE
ArXivPDFHTML

Papers citing "Disordered Systems Insights on Computational Hardness"

12 / 12 papers shown
Title
Faster algorithms for the alignment of sparse correlated Erdös-Rényi
  random graphs
Faster algorithms for the alignment of sparse correlated Erdös-Rényi random graphs
Andrea Muratori
G. Semerjian
24
1
0
14 May 2024
Is stochastic thermodynamics the key to understanding the energy costs
  of computation?
Is stochastic thermodynamics the key to understanding the energy costs of computation?
David Wolpert
Jan Korbel
Christopher Lynn
Farita Tasnim
Joshua A. Grochow
...
P. Riechers
Édgar Roldán
Brenda Rubenstein
Zoltán Toroczkai
Joseph Paradiso
AI4CE
19
18
0
28 Nov 2023
Benchmarking the optimization optical machines with the planted
  solutions
Benchmarking the optimization optical machines with the planted solutions
N. Stroev
N. Berloff
Nir Davidson
19
0
0
12 Nov 2023
On the Impact of Overparameterization on the Training of a Shallow
  Neural Network in High Dimensions
On the Impact of Overparameterization on the Training of a Shallow Neural Network in High Dimensions
Simon Martin
Francis Bach
Giulio Biroli
18
8
0
07 Nov 2023
Sampling with flows, diffusion and autoregressive neural networks: A
  spin-glass perspective
Sampling with flows, diffusion and autoregressive neural networks: A spin-glass perspective
Davide Ghio
Yatin Dandi
Florent Krzakala
Lenka Zdeborová
DiffM
22
26
0
27 Aug 2023
The RL Perceptron: Generalisation Dynamics of Policy Learning in High
  Dimensions
The RL Perceptron: Generalisation Dynamics of Policy Learning in High Dimensions
Nishil Patel
Sebastian Lee
Stefano Sarao Mannelli
Sebastian Goldt
Adrew Saxe
OffRL
13
3
0
17 Jun 2023
Barriers for the performance of graph neural networks (GNN) in discrete
  random structures. A comment
  on~\cite{schuetz2022combinatorial},\cite{angelini2023modern},\cite{schuetz2023reply}
Barriers for the performance of graph neural networks (GNN) in discrete random structures. A comment on~\cite{schuetz2022combinatorial},\cite{angelini2023modern},\cite{schuetz2023reply}
D. Gamarnik
6
3
0
05 Jun 2023
Neural-prior stochastic block model
Neural-prior stochastic block model
O. Duranthon
L. Zdeborová
22
3
0
17 Mar 2023
Average-Case Complexity of Tensor Decomposition for Low-Degree
  Polynomials
Average-Case Complexity of Tensor Decomposition for Low-Degree Polynomials
Alexander S. Wein
25
9
0
10 Nov 2022
Proof of the Contiguity Conjecture and Lognormal Limit for the Symmetric
  Perceptron
Proof of the Contiguity Conjecture and Lognormal Limit for the Symmetric Perceptron
Emmanuel Abbe
Shuangping Li
Allan Sly
39
40
0
25 Feb 2021
Sparse Bayesian Methods for Low-Rank Matrix Estimation
S. D. Babacan
M. Luessi
Rafael Molina
Aggelos K. Katsaggelos
CML
81
285
0
25 Feb 2011
Hiding Quiet Solutions in Random Constraint Satisfaction Problems
Hiding Quiet Solutions in Random Constraint Satisfaction Problems
Florent Krzakala
Lenka Zdeborová
65
110
0
14 Jan 2009
1