ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.10695
  4. Cited By
Incorporating Relevance Feedback for Information-Seeking Retrieval using
  Few-Shot Document Re-Ranking

Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking

19 October 2022
Tim Baumgärtner
Leonardo F. R. Ribeiro
Nils Reimers
Iryna Gurevych
ArXivPDFHTML

Papers citing "Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking"

4 / 4 papers shown
Title
Measuring Retrieval Complexity in Question Answering Systems
Measuring Retrieval Complexity in Question Answering Systems
Matteo Gabburo
Nicolaas Paul Jedema
Siddhant Garg
Leonardo F. R. Ribeiro
Alessandro Moschitti
34
0
0
05 Jun 2024
UKP-SQuARE v3: A Platform for Multi-Agent QA Research
UKP-SQuARE v3: A Platform for Multi-Agent QA Research
Haritz Puerto
Tim Baumgärtner
Rachneet Sachdeva
Haishuo Fang
Haotian Zhang
Sewin Tariverdian
Kexin Wang
Iryna Gurevych
21
2
0
31 Mar 2023
BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
  Retrieval Models
BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models
Nandan Thakur
Nils Reimers
Andreas Rucklé
Abhishek Srivastava
Iryna Gurevych
VLM
229
961
0
17 Apr 2021
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
243
11,659
0
09 Mar 2017
1