ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.12820
  4. Cited By
An Interpretable Deep Semantic Segmentation Method for Earth Observation

An Interpretable Deep Semantic Segmentation Method for Earth Observation

23 October 2022
Ziyang Zhang
Plamen Angelov
Eduardo Soares
Nicolas Longépé
P. Mathieu
ArXivPDFHTML

Papers citing "An Interpretable Deep Semantic Segmentation Method for Earth Observation"

5 / 5 papers shown
Title
IMAFD: An Interpretable Multi-stage Approach to Flood Detection from
  time series Multispectral Data
IMAFD: An Interpretable Multi-stage Approach to Flood Detection from time series Multispectral Data
Ziyang Zhang
Plamen Angelov
D. Kangin
Nicolas Longépé
AI4CE
31
1
0
13 May 2024
Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and
  Beyond: A Survey
Explainable AI (XAI) in Image Segmentation in Medicine, Industry, and Beyond: A Survey
Rokas Gipiškis
Chun-Wei Tsai
Olga Kurasova
36
5
0
02 May 2024
Learning from Unlabelled Data with Transformers: Domain Adaptation for
  Semantic Segmentation of High Resolution Aerial Images
Learning from Unlabelled Data with Transformers: Domain Adaptation for Semantic Segmentation of High Resolution Aerial Images
Nikolaos Dionelis
Francesco Pro
Luca Maiano
Irene Amerini
B. L. Saux
26
2
0
17 Apr 2024
Towards interpretable-by-design deep learning algorithms
Towards interpretable-by-design deep learning algorithms
Plamen Angelov
D. Kangin
Ziyang Zhang
8
6
0
19 Nov 2023
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image
  Segmentation
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
Vijay Badrinarayanan
Alex Kendall
R. Cipolla
SSeg
420
15,438
0
02 Nov 2015
1