ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.12860
  4. Cited By
Explicit Second-Order Min-Max Optimization Methods with Optimal
  Convergence Guarantee

Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee

23 October 2022
Tianyi Lin
P. Mertikopoulos
Michael I. Jordan
ArXivPDFHTML

Papers citing "Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee"

6 / 6 papers shown
Title
Gradient Norm Regularization Second-Order Algorithms for Solving
  Nonconvex-Strongly Concave Minimax Problems
Gradient Norm Regularization Second-Order Algorithms for Solving Nonconvex-Strongly Concave Minimax Problems
Jun-Lin Wang
Zi Xu
70
1
0
24 Nov 2024
Second-Order Min-Max Optimization with Lazy Hessians
Second-Order Min-Max Optimization with Lazy Hessians
Lesi Chen
Chengchang Liu
Jingzhao Zhang
34
1
0
12 Oct 2024
A Fully Parameter-Free Second-Order Algorithm for Convex-Concave Minimax
  Problems with Optimal Iteration Complexity
A Fully Parameter-Free Second-Order Algorithm for Convex-Concave Minimax Problems with Optimal Iteration Complexity
Junlin Wang
Junnan Yang
Zi Xu
21
2
0
04 Jul 2024
The First Optimal Acceleration of High-Order Methods in Smooth Convex
  Optimization
The First Optimal Acceleration of High-Order Methods in Smooth Convex Optimization
D. Kovalev
Alexander Gasnikov
44
29
0
19 May 2022
Perseus: A Simple and Optimal High-Order Method for Variational
  Inequalities
Perseus: A Simple and Optimal High-Order Method for Variational Inequalities
Tianyi Lin
Michael I. Jordan
17
9
0
06 May 2022
Generalized Optimistic Methods for Convex-Concave Saddle Point Problems
Generalized Optimistic Methods for Convex-Concave Saddle Point Problems
Ruichen Jiang
Aryan Mokhtari
22
32
0
19 Feb 2022
1