Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.13014
Cited By
Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks
24 October 2022
Chenxiao Yang
Qitian Wu
Junchi Yan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks"
6 / 6 papers shown
Title
GraphGLOW: Universal and Generalizable Structure Learning for Graph Neural Networks
Wentao Zhao
Qitian Wu
Chenxiao Yang
Junchi Yan
17
12
0
20 Jun 2023
Cross-Task Knowledge Distillation in Multi-Task Recommendation
Chenxiao Yang
Junwei Pan
Xiaofeng Gao
Tingyu Jiang
Dapeng Liu
Guihai Chen
29
44
0
20 Feb 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
166
1,095
0
27 Apr 2021
Distilling Knowledge from Graph Convolutional Networks
Yiding Yang
Jiayan Qiu
Mingli Song
Dacheng Tao
Xinchao Wang
141
222
0
23 Mar 2020
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1