Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.13662
Cited By
Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano
24 October 2022
Chuan Guo
Alexandre Sablayrolles
Maziar Sanjabi
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano"
15 / 15 papers shown
Title
Analyzing Inference Privacy Risks Through Gradients in Machine Learning
Zhuohang Li
Andrew Lowy
Jing Liu
T. Koike-Akino
K. Parsons
Bradley Malin
Ye Wang
FedML
30
1
0
29 Aug 2024
Differentially Private Representation Learning via Image Captioning
Tom Sander
Yaodong Yu
Maziar Sanjabi
Alain Durmus
Yi-An Ma
Kamalika Chaudhuri
Chuan Guo
48
3
0
04 Mar 2024
Measuring Privacy Loss in Distributed Spatio-Temporal Data
Tatsuki Koga
Casey Meehan
Kamalika Chaudhuri
24
0
0
18 Feb 2024
Implicit Bias in Noisy-SGD: With Applications to Differentially Private Training
Tom Sander
Maxime Sylvestre
Alain Durmus
28
1
0
13 Feb 2024
Initialization Matters: Privacy-Utility Analysis of Overparameterized Neural Networks
Jiayuan Ye
Zhenyu Zhu
Fanghui Liu
Reza Shokri
V. Cevher
27
12
0
31 Oct 2023
Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Eric Aubinais
Elisabeth Gassiat
Pablo Piantanida
MIACV
48
2
0
20 Oct 2023
Unlocking Accuracy and Fairness in Differentially Private Image Classification
Leonard Berrada
Soham De
J. Shen
Jamie Hayes
Robert Stanforth
David Stutz
Pushmeet Kohli
Samuel L. Smith
Borja Balle
19
13
0
21 Aug 2023
Bounding data reconstruction attacks with the hypothesis testing interpretation of differential privacy
Georgios Kaissis
Jamie Hayes
Alexander Ziller
Daniel Rueckert
AAML
28
11
0
08 Jul 2023
Information Flow Control in Machine Learning through Modular Model Architecture
Trishita Tiwari
Suchin Gururangan
Chuan Guo
Weizhe Hua
Sanjay Kariyappa
Udit Gupta
Wenjie Xiong
Kiwan Maeng
Hsien-Hsin S. Lee
G. E. Suh
19
6
0
05 Jun 2023
Bounding the Invertibility of Privacy-preserving Instance Encoding using Fisher Information
Kiwan Maeng
Chuan Guo
Sanjay Kariyappa
G. E. Suh
11
8
0
06 May 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
Bounding Training Data Reconstruction in DP-SGD
Jamie Hayes
Saeed Mahloujifar
Borja Balle
AAML
FedML
21
39
0
14 Feb 2023
One-shot Empirical Privacy Estimation for Federated Learning
Galen Andrew
Peter Kairouz
Sewoong Oh
Alina Oprea
H. B. McMahan
Vinith M. Suriyakumar
FedML
19
32
0
06 Feb 2023
Bounding Training Data Reconstruction in Private (Deep) Learning
Chuan Guo
Brian Karrer
Kamalika Chaudhuri
L. V. D. van der Maaten
103
53
0
28 Jan 2022
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,808
0
14 Dec 2020
1