ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.13858
  4. Cited By
LAB: Learnable Activation Binarizer for Binary Neural Networks

LAB: Learnable Activation Binarizer for Binary Neural Networks

25 October 2022
Sieger Falkena
Hadi Jamali Rad
J. C. V. Gemert
    MQ
ArXivPDFHTML

Papers citing "LAB: Learnable Activation Binarizer for Binary Neural Networks"

3 / 3 papers shown
Title
E2FIF: Push the limit of Binarized Deep Imagery Super-resolution using
  End-to-end Full-precision Information Flow
E2FIF: Push the limit of Binarized Deep Imagery Super-resolution using End-to-end Full-precision Information Flow
Zhiqiang Lang
Chongxing Song
Lei Zhang
Wei Wei
SupR
MQ
19
4
0
14 Jul 2022
Forward and Backward Information Retention for Accurate Binary Neural
  Networks
Forward and Backward Information Retention for Accurate Binary Neural Networks
Haotong Qin
Ruihao Gong
Xianglong Liu
Mingzhu Shen
Ziran Wei
F. Yu
Jingkuan Song
MQ
117
321
0
24 Sep 2019
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
1