ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.14320
  4. Cited By
FO-PINNs: A First-Order formulation for Physics Informed Neural Networks

FO-PINNs: A First-Order formulation for Physics Informed Neural Networks

25 October 2022
R. J. Gladstone
M. A. Nabian
N. Sukumar
Ankit Srivastava
Hadi Meidani
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "FO-PINNs: A First-Order formulation for Physics Informed Neural Networks"

3 / 3 papers shown
Title
Physics-based Deep Learning
Physics-based Deep Learning
Nils Thuerey
Philipp Holl
P. Holl
Patrick Schnell
Felix Trost
Kiwon Um
P. Schnell
F. Trost
PINN
AI4CE
48
89
0
11 Sep 2021
Efficient training of physics-informed neural networks via importance
  sampling
Efficient training of physics-informed neural networks via importance sampling
M. A. Nabian
R. J. Gladstone
Hadi Meidani
DiffM
PINN
63
218
0
26 Apr 2021
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
616
0
13 Mar 2020
1