ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.15318
  4. Cited By
Efficient and Effective Augmentation Strategy for Adversarial Training

Efficient and Effective Augmentation Strategy for Adversarial Training

27 October 2022
Sravanti Addepalli
Samyak Jain
R. Venkatesh Babu
    AAML
ArXivPDFHTML

Papers citing "Efficient and Effective Augmentation Strategy for Adversarial Training"

3 / 3 papers shown
Title
STBA: Towards Evaluating the Robustness of DNNs for Query-Limited
  Black-box Scenario
STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario
Renyang Liu
Kwok-Yan Lam
Wei Zhou
Sixing Wu
Jun Zhao
Dongting Hu
Mingming Gong
AAML
21
0
0
30 Mar 2024
DART: Diversify-Aggregate-Repeat Training Improves Generalization of
  Neural Networks
DART: Diversify-Aggregate-Repeat Training Improves Generalization of Neural Networks
Samyak Jain
Sravanti Addepalli
P. Sahu
Priyam Dey
R. Venkatesh Babu
MoMe
OOD
25
20
0
28 Feb 2023
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
207
668
0
19 Oct 2020
1