Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2210.17319
Cited By
Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems
31 October 2022
Daniel Kelshaw
Georgios Rigas
Luca Magri
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems"
8 / 8 papers shown
Title
How to Re-enable PDE Loss for Physical Systems Modeling Under Partial Observation
Haodong Feng
Yue Wang
Dixia Fan
AI4CE
75
0
0
12 Dec 2024
Reconstructing unsteady flows from sparse, noisy measurements with a physics-constrained convolutional neural network
Yaxin Mo
Luca Magri
AI4CE
28
0
0
30 Aug 2024
Thermodynamics-informed super-resolution of scarce temporal dynamics data
Carlos Bermejo-Barbanoj
B. Moya
Alberto Badías
Francisco Chinesta
Elías Cueto
AI4CE
21
2
0
27 Feb 2024
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
R. Mojgani
A. Chattopadhyay
P. Hassanzadeh
33
7
0
22 Sep 2023
Learning the solution operator of two-dimensional incompressible Navier-Stokes equations using physics-aware convolutional neural networks
Viktor Grimm
Alexander Heinlein
A. Klawonn
AI4CE
19
4
0
04 Aug 2023
Physics-Informed Computer Vision: A Review and Perspectives
C. Banerjee
Kien Nguyen
Clinton Fookes
G. Karniadakis
PINN
AI4CE
34
28
0
29 May 2023
Reconstruction, forecasting, and stability of chaotic dynamics from partial data
Elise Özalp
G. Margazoglou
Luca Magri
AI4TS
13
10
0
24 May 2023
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
130
424
0
10 Mar 2020
1