238

RGMIM: Region-Guided Masked Image Modeling for COVID-19 Detection

Guang Li
Ren Togo
Takahiro Ogawa
Abstract

Purpose: Self-supervised learning is rapidly advancing computer-aided diagnosis in the medical field. Masked image modeling (MIM) is one of the self-supervised learning methods that masks a subset of input pixels and attempts to predict the masked pixels. Traditional MIM methods often employ a random masking strategy. In comparison to ordinary images, medical images often have a small region of interest for disease detection. Consequently, we focus on fixing the problem in this work, which is evaluated by automatic COVID-19 identification. Methods: In this study, we propose a novel region-guided masked image modeling method (RGMIM) for COVID-19 detection in this paper. In our method, we devise a new masking strategy that employed lung mask information to identify valid regions to learn more useful information for COVID-19 detection. The proposed method was contrasted with five self-supervised learning techniques (MAE, SKD, Cross, BYOL, and, SimSiam). We present a quantitative evaluation of open COVID-19 CXR datasets as well as masking ratio hyperparameter studies. Results: When using the entire training set, RGMIM outperformed other comparable methods, achieving 0.962 detection accuracy. Specifically, RGMIM significantly improved COVID-19 detection in small data volumes, such as 5% and 10% of the training set (846 and 1,693 images) compared to other methods, and achieved 0.957 detection accuracy even when only 50% of the training set was used. Conclusions: RGMIM can mask more valid lung-related regions, facilitating the learning of discriminative representations and the subsequent high-accuracy COVID-19 detection. RGMIM outperforms other state-of-the-art self-supervised learning methods in experiments, particularly when limited training data is used. RGMIM also has the potential to be applied to other medical images.

View on arXiv
Comments on this paper