236

RGMIM: Region-Guided Masked Image Modeling for COVID-19 Detection

Guang Li
Ren Togo
Takahiro Ogawa
Abstract

Background and objective: Self-supervised learning is rapidly advancing computer-aided diagnosis in the medical field. Masked image modeling (MIM) is one of the self-supervised learning methods that masks a subset of input pixels and attempts to predict the masked pixels. Traditional MIM methods often employ a random masking strategy. In comparison to ordinary images, medical images often have a small region of interest for disease detection. Consequently, we focus on fixing the problem in this work, which is evaluated by automatic COVID-19 identification. Methods: In this study, we propose a novel region-guided masked image modeling method (RGMIM) for COVID-19 detection in this paper. In our method, we devise a new masking strategy that employed lung mask information to identify valid regions to learn more useful information for COVID-19 detection. The proposed method was contrasted with five self-supervised learning techniques (MAE, SKD, Cross, BYOL, and, SimSiam). We present a quantitative evaluation of open COVID-19 CXR datasets as well as masking ratio hyperparameter studies. Results: When using the entire training set, RGMIM outperformed other comparable methods, achieving 0.962 detection accuracy. Specifically, RGMIM significantly improved COVID-19 detection in small data volumes, such as 5% and 10% of the training set (846 and 1,693 images) compared to other methods, and achieved 0.957 detection accuracy even when only 50% of the training set was used. Conclusions: RGMIM can mask more valid lung-related regions, facilitating the learning of discriminative representations and the subsequent high-accuracy COVID-19 detection. RGMIM outperforms other state-of-the-art self-supervised learning methods in experiments, particularly when limited training data is used.

View on arXiv
Comments on this paper