ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.00635
  4. Cited By
Two-stage LLM Fine-tuning with Less Specialization and More
  Generalization

Two-stage LLM Fine-tuning with Less Specialization and More Generalization

1 November 2022
Yihan Wang
Si Si
Daliang Li
Michal Lukasik
Felix X. Yu
Cho-Jui Hsieh
Inderjit S Dhillon
Sanjiv Kumar
ArXivPDFHTML

Papers citing "Two-stage LLM Fine-tuning with Less Specialization and More Generalization"

5 / 5 papers shown
Title
HSplitLoRA: A Heterogeneous Split Parameter-Efficient Fine-Tuning Framework for Large Language Models
HSplitLoRA: A Heterogeneous Split Parameter-Efficient Fine-Tuning Framework for Large Language Models
Zheng Lin
Yuxin Zhang
Zhe Chen
Zihan Fang
Xianhao Chen
Praneeth Vepakomma
Wei Ni
Jun-Jie Luo
Yue Gao
MoE
25
0
0
05 May 2025
Investigating the Catastrophic Forgetting in Multimodal Large Language
  Models
Investigating the Catastrophic Forgetting in Multimodal Large Language Models
Yuexiang Zhai
Shengbang Tong
Xiao Li
Mu Cai
Qing Qu
Yong Jae Lee
Y. Ma
VLM
MLLM
CLL
66
75
0
19 Sep 2023
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
228
780
0
14 Oct 2021
The Power of Scale for Parameter-Efficient Prompt Tuning
The Power of Scale for Parameter-Efficient Prompt Tuning
Brian Lester
Rami Al-Rfou
Noah Constant
VPVLM
275
3,784
0
18 Apr 2021
Making Pre-trained Language Models Better Few-shot Learners
Making Pre-trained Language Models Better Few-shot Learners
Tianyu Gao
Adam Fisch
Danqi Chen
238
1,898
0
31 Dec 2020
1