ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01327
  4. Cited By
Predicting phoneme-level prosody latents using AR and flow-based Prior
  Networks for expressive speech synthesis

Predicting phoneme-level prosody latents using AR and flow-based Prior Networks for expressive speech synthesis

2 November 2022
Konstantinos Klapsas
Karolos Nikitaras
Nikolaos Ellinas
June Sig Sung
Inchul Hwang
S. Raptis
Aimilios Chalamandaris
Pirros Tsiakoulis
ArXivPDFHTML

Papers citing "Predicting phoneme-level prosody latents using AR and flow-based Prior Networks for expressive speech synthesis"

1 / 1 papers shown
Title
Emformer: Efficient Memory Transformer Based Acoustic Model For Low
  Latency Streaming Speech Recognition
Emformer: Efficient Memory Transformer Based Acoustic Model For Low Latency Streaming Speech Recognition
Yangyang Shi
Yongqiang Wang
Chunyang Wu
Ching-Feng Yeh
Julian Chan
Frank Zhang
Duc Le
M. Seltzer
56
168
0
21 Oct 2020
1