ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01340
  4. Cited By
POLICE: Provably Optimal Linear Constraint Enforcement for Deep Neural
  Networks
v1v2v3 (latest)

POLICE: Provably Optimal Linear Constraint Enforcement for Deep Neural Networks

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2022
2 November 2022
Randall Balestriero
Yann LeCun
ArXiv (abs)PDFHTMLGithub (15★)

Papers citing "POLICE: Provably Optimal Linear Constraint Enforcement for Deep Neural Networks"

13 / 13 papers shown
ECO: Energy-Constrained Operator Learning for Chaotic Dynamics with Boundedness Guarantees
Andrea Goertzen
Sunbochen Tang
Navid Azizan
64
0
0
01 Dec 2025
Provably-Safe Neural Network Training Using Hybrid Zonotope Reachability Analysis
Provably-Safe Neural Network Training Using Hybrid Zonotope Reachability Analysis
Long Kiu Chung
Shreyas Kousik
1.0K
1
0
22 Jan 2025
TL-PCA: Transfer Learning of Principal Component Analysis
TL-PCA: Transfer Learning of Principal Component Analysis
Sharon Hendy
Yehuda Dar
408
4
0
14 Oct 2024
POLICEd RL: Learning Closed-Loop Robot Control Policies with Provable
  Satisfaction of Hard Constraints
POLICEd RL: Learning Closed-Loop Robot Control Policies with Provable Satisfaction of Hard Constraints
Jean-Baptiste Bouvier
Kartik Nagpal
Negar Mehr
278
5
0
20 Mar 2024
Deep Networks Always Grok and Here is Why
Deep Networks Always Grok and Here is Why
Ahmed Imtiaz Humayun
Randall Balestriero
Richard Baraniuk
AAMLOODAI4CE
415
43
0
23 Feb 2024
Modularity in Deep Learning: A Survey
Modularity in Deep Learning: A Survey
Haozhe Sun
Isabelle Guyon
MoMe
305
5
0
02 Oct 2023
A New Computationally Simple Approach for Implementing Neural Networks
  with Output Hard Constraints
A New Computationally Simple Approach for Implementing Neural Networks with Output Hard ConstraintsDoklady. Mathematics (Dokl. Math.), 2023
A. Konstantinov
Lev V. Utkin
196
15
0
19 Jul 2023
RAYEN: Imposition of Hard Convex Constraints on Neural Networks
RAYEN: Imposition of Hard Convex Constraints on Neural Networks
J. Tordesillas
Jonathan P. How
Marco Hutter
162
25
0
17 Jul 2023
NIFTY: Neural Object Interaction Fields for Guided Human Motion
  Synthesis
NIFTY: Neural Object Interaction Fields for Guided Human Motion SynthesisComputer Vision and Pattern Recognition (CVPR), 2023
Nilesh Kulkarni
Davis Rempe
Kyle Genova
Abhijit Kundu
Justin Johnson
David Fouhey
Leonidas Guibas
DiffM
182
80
0
14 Jul 2023
Neural Fields with Hard Constraints of Arbitrary Differential Order
Neural Fields with Hard Constraints of Arbitrary Differential OrderNeural Information Processing Systems (NeurIPS), 2023
Fangcheng Zhong
Kyle Fogarty
Param Hanji
Tianhao Wu
Alejandro Sztrajman
Andrew Spielberg
Andrea Tagliasacchi
Petra Bosilj
Cengiz Öztireli
AI4CE
158
7
0
15 Jun 2023
Polyhedral Complex Extraction from ReLU Networks using Edge Subdivision
Polyhedral Complex Extraction from ReLU Networks using Edge SubdivisionInternational Conference on Machine Learning (ICML), 2023
Arturs Berzins
200
10
0
12 Jun 2023
Safety without alignment
Safety without alignment
András Kornai
M. Bukatin
Zsolt Zombori
LLMSV
247
1
0
27 Feb 2023
Constrained Empirical Risk Minimization: Theory and Practice
Constrained Empirical Risk Minimization: Theory and Practice
Eric Marcus
Ray Sheombarsing
Jan-Jakob Sonke
Jonas Teuwen
207
1
0
09 Feb 2023
1