ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.01365
  4. Cited By
QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman
  Operator Learning

QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning

2 November 2022
Di Luo
Jiayu Shen
Rumen Dangovski
Marin Soljacic
ArXivPDFHTML

Papers citing "QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning"

3 / 3 papers shown
Title
Analyzing Convergence in Quantum Neural Networks: Deviations from Neural
  Tangent Kernels
Analyzing Convergence in Quantum Neural Networks: Deviations from Neural Tangent Kernels
Xuchen You
Shouvanik Chakrabarti
Boyang Chen
Xiaodi Wu
32
10
0
26 Mar 2023
A Convergence Theory for Over-parameterized Variational Quantum
  Eigensolvers
A Convergence Theory for Over-parameterized Variational Quantum Eigensolvers
Xuchen You
Shouvanik Chakrabarti
Xiaodi Wu
50
34
0
25 May 2022
Learning to Forecast Dynamical Systems from Streaming Data
Learning to Forecast Dynamical Systems from Streaming Data
D. Giannakis
Amelia Henriksen
J. Tropp
Rachel A. Ward
AI4TS
33
17
0
20 Sep 2021
1