Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.01783
Cited By
Quantifying and Learning Static vs. Dynamic Information in Deep Spatiotemporal Networks
3 November 2022
M. Kowal
Mennatullah Siam
Md. Amirul Islam
Neil D. B. Bruce
Richard P. Wildes
Konstantinos G. Derpanis
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Quantifying and Learning Static vs. Dynamic Information in Deep Spatiotemporal Networks"
6 / 6 papers shown
Title
Prisma: An Open Source Toolkit for Mechanistic Interpretability in Vision and Video
Sonia Joseph
Praneet Suresh
Lorenz Hufe
Edward Stevinson
Robert Graham
Yash Vadi
Danilo Bzdok
Sebastian Lapuschkin
Lee Sharkey
Blake A. Richards
72
0
0
28 Apr 2025
Understanding Video Transformers via Universal Concept Discovery
M. Kowal
Achal Dave
Rares Ambrus
Adrien Gaidon
Konstantinos G. Derpanis
P. Tokmakov
ViT
27
8
0
19 Jan 2024
Deeply Explain CNN via Hierarchical Decomposition
Mingg-Ming Cheng
Peng-Tao Jiang
Linghao Han
Liang Wang
Philip H. S. Torr
FAtt
48
15
0
23 Jan 2022
Interpretable Deep Feature Propagation for Early Action Recognition
He Zhao
Richard P. Wildes
FAtt
21
8
0
11 Jul 2021
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
278
1,939
0
09 Feb 2021
Motion-Attentive Transition for Zero-Shot Video Object Segmentation
Tianfei Zhou
Shunzhou Wang
Yi Zhou
Yazhou Yao
Jianwu Li
Ling Shao
VOS
122
189
0
09 Mar 2020
1