ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.03241
  4. Cited By
Neural PDE Solvers for Irregular Domains

Neural PDE Solvers for Irregular Domains

7 November 2022
Biswajit Khara
Ethan Herron
Zhanhong Jiang
Aditya Balu
Chih-Hsuan Yang
K. Saurabh
Anushrut Jignasu
S. Sarkar
C. Hegde
A. Krishnamurthy
Baskar Ganapathysubramanian
    AI4CE
ArXivPDFHTML

Papers citing "Neural PDE Solvers for Irregular Domains"

7 / 7 papers shown
Title
Physics informed cell representations for variational formulation of
  multiscale problems
Physics informed cell representations for variational formulation of multiscale problems
Yuxiang Gao
Soheil Kolouri
R. Duddu
AI4CE
29
0
0
27 May 2024
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
  Hermite-Spline CNNs
Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
Nils Wandel
Michael Weinmann
Michael Neidlin
Reinhard Klein
AI4CE
55
59
0
15 Sep 2021
SPINN: Sparse, Physics-based, and partially Interpretable Neural
  Networks for PDEs
SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs
A. A. Ramabathiran
P. Ramachandran
PINN
AI4CE
27
76
0
25 Feb 2021
Algorithmically-Consistent Deep Learning Frameworks for Structural
  Topology Optimization
Algorithmically-Consistent Deep Learning Frameworks for Structural Topology Optimization
Jaydeep Rade
Aditya Balu
Ethan Herron
Jay Pathak
Rishikesh Ranade
S. Sarkar
A. Krishnamurthy
23
42
0
09 Dec 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
  Decomposition
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
125
508
0
11 Mar 2020
An Energy Approach to the Solution of Partial Differential Equations in
  Computational Mechanics via Machine Learning: Concepts, Implementation and
  Applications
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
145
1,339
0
27 Aug 2019
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
133
1,198
0
16 Aug 2016
1