Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.03495
Cited By
How Much Does Attention Actually Attend? Questioning the Importance of Attention in Pretrained Transformers
7 November 2022
Michael Hassid
Hao Peng
Daniel Rotem
Jungo Kasai
Ivan Montero
Noah A. Smith
Roy Schwartz
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How Much Does Attention Actually Attend? Questioning the Importance of Attention in Pretrained Transformers"
9 / 9 papers shown
Title
MIMONets: Multiple-Input-Multiple-Output Neural Networks Exploiting Computation in Superposition
Nicolas Menet
Michael Hersche
G. Karunaratne
Luca Benini
Abu Sebastian
Abbas Rahimi
28
13
0
05 Dec 2023
Homophone Disambiguation Reveals Patterns of Context Mixing in Speech Transformers
Hosein Mohebbi
Grzegorz Chrupała
Willem H. Zuidema
A. Alishahi
28
12
0
15 Oct 2023
PMET: Precise Model Editing in a Transformer
Xiaopeng Li
Shasha Li
Shezheng Song
Jing Yang
Jun Ma
Jie Yu
KELM
26
115
0
17 Aug 2023
Computational modeling of semantic change
Nina Tahmasebi
Haim Dubossarsky
28
6
0
13 Apr 2023
Efficient Methods for Natural Language Processing: A Survey
Marcos Vinícius Treviso
Ji-Ung Lee
Tianchu Ji
Betty van Aken
Qingqing Cao
...
Emma Strubell
Niranjan Balasubramanian
Leon Derczynski
Iryna Gurevych
Roy Schwartz
28
109
0
31 Aug 2022
Transformer Quality in Linear Time
Weizhe Hua
Zihang Dai
Hanxiao Liu
Quoc V. Le
73
222
0
21 Feb 2022
ABC: Attention with Bounded-memory Control
Hao Peng
Jungo Kasai
Nikolaos Pappas
Dani Yogatama
Zhaofeng Wu
Lingpeng Kong
Roy Schwartz
Noah A. Smith
61
22
0
06 Oct 2021
Probing Classifiers: Promises, Shortcomings, and Advances
Yonatan Belinkov
226
404
0
24 Feb 2021
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Alex Jinpeng Wang
Amanpreet Singh
Julian Michael
Felix Hill
Omer Levy
Samuel R. Bowman
ELM
297
6,956
0
20 Apr 2018
1