ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.03553
  4. Cited By
Learning Causal Representations of Single Cells via Sparse Mechanism
  Shift Modeling

Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling

7 November 2022
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
    OOD
    CML
    DRL
ArXivPDFHTML

Papers citing "Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling"

19 / 19 papers shown
Title
In-silico biological discovery with large perturbation models
In-silico biological discovery with large perturbation models
Djordje Miladinovic
Tobias Hoppe
Mathieu Chevalley
Andreas Georgiou
Lachlan Stuart
Arash Mehrjou
M. Bantscheff
Bernhard Schölkopf
Patrick Schwab
34
0
0
30 Mar 2025
Efficient Data Selection for Training Genomic Perturbation Models
Efficient Data Selection for Training Genomic Perturbation Models
G. Panagopoulos
J. Lutzeyer
Sofiane Ennadir
Michalis Vazirgiannis
Jun Pang
66
0
0
18 Mar 2025
Sanity Checking Causal Representation Learning on a Simple Real-World System
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
50
0
0
27 Feb 2025
No Foundations without Foundations -- Why semi-mechanistic models are essential for regulatory biology
No Foundations without Foundations -- Why semi-mechanistic models are essential for regulatory biology
Luka Kovacevic
Thomas Gaudelet
James Opzoomer
Hagen Triendl
John Whittaker
Caroline Uhler
Lindsay Edwards
J. Taylor-King
AI4CE
62
0
0
31 Jan 2025
GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
Seungheun Baek
Soyon Park
Y. T. Chok
Mogan Gim
Jaewoo Kang
DRL
40
0
0
31 Jan 2025
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Sepideh Maleki
Jan-Christian Huetter
Kangway V Chuang
Gabriele Scalia
Tommaso Biancalani
Tommaso Biancalani
AI4CE
85
2
0
18 Dec 2024
Learning Identifiable Factorized Causal Representations of Cellular
  Responses
Learning Identifiable Factorized Causal Representations of Cellular Responses
Haiyi Mao
Romain Lopez
Kai Liu
Jan-Christian Huetter
David Richmond
Panayiotis Benos
Lin Qiu
CML
22
3
0
29 Oct 2024
Automated Discovery of Pairwise Interactions from Unstructured Data
Automated Discovery of Pairwise Interactions from Unstructured Data
Zuheng
Xu
Moksh Jain
Ali Denton
Shawn Whitfield
Aniket Didolkar
Berton A. Earnshaw
Jason S. Hartford
16
2
0
11 Sep 2024
CRADLE-VAE: Enhancing Single-Cell Gene Perturbation Modeling with
  Counterfactual Reasoning-based Artifact Disentanglement
CRADLE-VAE: Enhancing Single-Cell Gene Perturbation Modeling with Counterfactual Reasoning-based Artifact Disentanglement
Seungheun Baek
Soyon Park
Y. T. Chok
Junhyun Lee
Jueon Park
Mogan Gim
Jaewoo Kang
CML
30
1
0
09 Sep 2024
PerturBench: Benchmarking Machine Learning Models for Cellular
  Perturbation Analysis
PerturBench: Benchmarking Machine Learning Models for Cellular Perturbation Analysis
Yan Wu
Esther Wershof
Sebastian M. Schmon
Marcel Nassar
Błażej Osiński
Ridvan Eksi
Kun Zhang
T. Graepel
19
6
0
20 Aug 2024
sc-OTGM: Single-Cell Perturbation Modeling by Solving Optimal Mass
  Transport on the Manifold of Gaussian Mixtures
sc-OTGM: Single-Cell Perturbation Modeling by Solving Optimal Mass Transport on the Manifold of Gaussian Mixtures
Andac Demir
E. Solovyeva
James Boylan
Mei Xiao
Fabrizio Serluca
S. Hoersch
Jeremy L Jenkins
Murthy S. Devarakonda
B. Kiziltan
19
0
0
06 May 2024
Toward the Identifiability of Comparative Deep Generative Models
Toward the Identifiability of Comparative Deep Generative Models
Romain Lopez
Jan-Christian Huetter
Ehsan Hajiramezanali
Jonathan Pritchard
Aviv Regev
13
2
0
29 Jan 2024
Invariance & Causal Representation Learning: Prospects and Limitations
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
Jonas Wahl
Urmi Ninad
Jakob Runge
CML
OOD
23
3
0
06 Dec 2023
Learning Causal Representations from General Environments:
  Identifiability and Intrinsic Ambiguity
Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity
Jikai Jin
Vasilis Syrgkanis
CML
17
5
0
21 Nov 2023
Modelling Cellular Perturbations with the Sparse Additive Mechanism
  Shift Variational Autoencoder
Modelling Cellular Perturbations with the Sparse Additive Mechanism Shift Variational Autoencoder
Michael D. Bereket
Theofanis Karaletsos
DRL
14
18
0
05 Nov 2023
Conditionally Invariant Representation Learning for Disentangling
  Cellular Heterogeneity
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
13
6
0
02 Jul 2023
Out-of-Variable Generalization for Discriminative Models
Out-of-Variable Generalization for Discriminative Models
Siyuan Guo
J. Wildberger
Bernhard Schölkopf
OOD
CML
7
2
0
16 Apr 2023
Unpaired Multi-Domain Causal Representation Learning
Unpaired Multi-Domain Causal Representation Learning
Nils Sturma
C. Squires
Mathias Drton
Caroline Uhler
OOD
CML
13
20
0
02 Feb 2023
Interventional Causal Representation Learning
Interventional Causal Representation Learning
Kartik Ahuja
Divyat Mahajan
Yixin Wang
Yoshua Bengio
CML
26
83
0
24 Sep 2022
1