Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.03553
Cited By
Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling
7 November 2022
Romain Lopez
Natavsa Tagasovska
Stephen Ra
K. Cho
J. Pritchard
Aviv Regev
OOD
CML
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Causal Representations of Single Cells via Sparse Mechanism Shift Modeling"
19 / 19 papers shown
Title
In-silico biological discovery with large perturbation models
Djordje Miladinovic
Tobias Hoppe
Mathieu Chevalley
Andreas Georgiou
Lachlan Stuart
Arash Mehrjou
M. Bantscheff
Bernhard Schölkopf
Patrick Schwab
34
0
0
30 Mar 2025
Efficient Data Selection for Training Genomic Perturbation Models
G. Panagopoulos
J. Lutzeyer
Sofiane Ennadir
Michalis Vazirgiannis
Jun Pang
66
0
0
18 Mar 2025
Sanity Checking Causal Representation Learning on a Simple Real-World System
Juan L. Gamella
Simon Bing
Jakob Runge
CML
50
0
0
27 Feb 2025
No Foundations without Foundations -- Why semi-mechanistic models are essential for regulatory biology
Luka Kovacevic
Thomas Gaudelet
James Opzoomer
Hagen Triendl
John Whittaker
Caroline Uhler
Lindsay Edwards
J. Taylor-King
AI4CE
62
0
0
31 Jan 2025
GPO-VAE: Modeling Explainable Gene Perturbation Responses utilizing GRN-Aligned Parameter Optimization
Seungheun Baek
Soyon Park
Y. T. Chok
Mogan Gim
Jaewoo Kang
DRL
40
0
0
31 Jan 2025
Efficient Fine-Tuning of Single-Cell Foundation Models Enables Zero-Shot Molecular Perturbation Prediction
Sepideh Maleki
Jan-Christian Huetter
Kangway V Chuang
Gabriele Scalia
Tommaso Biancalani
Tommaso Biancalani
AI4CE
85
2
0
18 Dec 2024
Learning Identifiable Factorized Causal Representations of Cellular Responses
Haiyi Mao
Romain Lopez
Kai Liu
Jan-Christian Huetter
David Richmond
Panayiotis Benos
Lin Qiu
CML
22
3
0
29 Oct 2024
Automated Discovery of Pairwise Interactions from Unstructured Data
Zuheng
Xu
Moksh Jain
Ali Denton
Shawn Whitfield
Aniket Didolkar
Berton A. Earnshaw
Jason S. Hartford
16
2
0
11 Sep 2024
CRADLE-VAE: Enhancing Single-Cell Gene Perturbation Modeling with Counterfactual Reasoning-based Artifact Disentanglement
Seungheun Baek
Soyon Park
Y. T. Chok
Junhyun Lee
Jueon Park
Mogan Gim
Jaewoo Kang
CML
30
1
0
09 Sep 2024
PerturBench: Benchmarking Machine Learning Models for Cellular Perturbation Analysis
Yan Wu
Esther Wershof
Sebastian M. Schmon
Marcel Nassar
Błażej Osiński
Ridvan Eksi
Kun Zhang
T. Graepel
19
6
0
20 Aug 2024
sc-OTGM: Single-Cell Perturbation Modeling by Solving Optimal Mass Transport on the Manifold of Gaussian Mixtures
Andac Demir
E. Solovyeva
James Boylan
Mei Xiao
Fabrizio Serluca
S. Hoersch
Jeremy L Jenkins
Murthy S. Devarakonda
B. Kiziltan
19
0
0
06 May 2024
Toward the Identifiability of Comparative Deep Generative Models
Romain Lopez
Jan-Christian Huetter
Ehsan Hajiramezanali
Jonathan Pritchard
Aviv Regev
13
2
0
29 Jan 2024
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
Jonas Wahl
Urmi Ninad
Jakob Runge
CML
OOD
23
3
0
06 Dec 2023
Learning Causal Representations from General Environments: Identifiability and Intrinsic Ambiguity
Jikai Jin
Vasilis Syrgkanis
CML
17
5
0
21 Nov 2023
Modelling Cellular Perturbations with the Sparse Additive Mechanism Shift Variational Autoencoder
Michael D. Bereket
Theofanis Karaletsos
DRL
14
18
0
05 Nov 2023
Conditionally Invariant Representation Learning for Disentangling Cellular Heterogeneity
H. Aliee
Ferdinand Kapl
Soroor Hediyeh-zadeh
Fabian J. Theis
CML
13
6
0
02 Jul 2023
Out-of-Variable Generalization for Discriminative Models
Siyuan Guo
J. Wildberger
Bernhard Schölkopf
OOD
CML
7
2
0
16 Apr 2023
Unpaired Multi-Domain Causal Representation Learning
Nils Sturma
C. Squires
Mathias Drton
Caroline Uhler
OOD
CML
13
20
0
02 Feb 2023
Interventional Causal Representation Learning
Kartik Ahuja
Divyat Mahajan
Yixin Wang
Yoshua Bengio
CML
26
83
0
24 Sep 2022
1