ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.04161
  4. Cited By
Theoretical analysis and experimental validation of volume bias of soft
  Dice optimized segmentation maps in the context of inherent uncertainty

Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty

8 November 2022
J. Bertels
D. Robben
Dirk Vandermeulen
P. Suetens
ArXiv (abs)PDFHTML

Papers citing "Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty"

10 / 10 papers shown
Title
A review of uncertainty quantification in medical image analysis:
  probabilistic and non-probabilistic methods
A review of uncertainty quantification in medical image analysis: probabilistic and non-probabilistic methods
Ling Huang
S. Ruan
Yucheng Xing
Mengling Feng
295
44
0
09 Oct 2023
Encoding Enhanced Complex CNN for Accurate and Highly Accelerated MRI
Encoding Enhanced Complex CNN for Accurate and Highly Accelerated MRIIEEE Transactions on Medical Imaging (TMI), 2023
Zimeng Li
Sa Xiao
Cheng Wang
Haidong Li
Xiuchao Zhao
...
Junshuai Xie
Lei Shi
F. Guo
Chaohui Ye
Xin Zhou
197
6
0
21 Jun 2023
Marginal Thresholding in Noisy Image Segmentation
Marginal Thresholding in Noisy Image Segmentation
M. Nordström
Henrik Hult
A. Maki
NoLa
186
0
0
08 Apr 2023
Noisy Image Segmentation With Soft-Dice
Noisy Image Segmentation With Soft-Dice
M. Nordström
Henrik Hult
A. Maki
F. Löfman
245
4
0
03 Apr 2023
Dice Semimetric Losses: Optimizing the Dice Score with Soft Labels
Dice Semimetric Losses: Optimizing the Dice Score with Soft LabelsInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2023
Zifu Wang
Teodora Popordanoska
J. Bertels
Robin Lemmens
Matthew B. Blaschko
120
20
0
28 Mar 2023
Jaccard Metric Losses: Optimizing the Jaccard Index with Soft Labels
Jaccard Metric Losses: Optimizing the Jaccard Index with Soft LabelsNeural Information Processing Systems (NeurIPS), 2023
Zifu Wang
Xuefei Ning
Matthew B. Blaschko
VLM
425
19
0
11 Feb 2023
The Dice loss in the context of missing or empty labels: Introducing
  $Φ$ and $ε$
The Dice loss in the context of missing or empty labels: Introducing ΦΦΦ and εεεInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2022
Sofie Tilborghs
J. Bertels
D. Robben
Dirk Vandermeulen
F. Maes
160
6
0
19 Jul 2022
On Image Segmentation With Noisy Labels: Characterization and Volume
  Properties of the Optimal Solutions to Accuracy and Dice
On Image Segmentation With Noisy Labels: Characterization and Volume Properties of the Optimal Solutions to Accuracy and DiceNeural Information Processing Systems (NeurIPS), 2022
M. Nordström
Henrik Hult
J. Söderberg
F. Löfman
199
9
0
13 Jun 2022
On the relationship between calibrated predictors and unbiased volume
  estimation
On the relationship between calibrated predictors and unbiased volume estimationInternational Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2021
Teodora Popordanoska
J. Bertels
Dirk Vandermeulen
F. Maes
Matthew B. Blaschko
167
15
0
23 Dec 2021
Calibrating the Dice loss to handle neural network overconfidence for
  biomedical image segmentation
Calibrating the Dice loss to handle neural network overconfidence for biomedical image segmentationJournal of digital imaging (JDI), 2021
Michael Yeung
L. Rundo
Yang Nan
Evis Sala
Carola-Bibiane Schönlieb
Guang Yang
UQCV
149
55
0
31 Oct 2021
1