ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.04446
  4. Cited By
Private Set Generation with Discriminative Information

Private Set Generation with Discriminative Information

7 November 2022
Dingfan Chen
Raouf Kerkouche
Mario Fritz
    DD
ArXivPDFHTML

Papers citing "Private Set Generation with Discriminative Information"

26 / 26 papers shown
Title
Beyond Anonymization: Object Scrubbing for Privacy-Preserving 2D and 3D Vision Tasks
Beyond Anonymization: Object Scrubbing for Privacy-Preserving 2D and 3D Vision Tasks
Murat Bilgehan Ertan
Ronak Sahu
Phuong Ha Nguyen
Kaleel Mahmood
Marten van Dijk
27
0
0
23 Apr 2025
Dataset Distillation with Neural Characteristic Function: A Minmax Perspective
Dataset Distillation with Neural Characteristic Function: A Minmax Perspective
Shaobo Wang
Yicun Yang
Z. Liu
Chenghao Sun
Xuming Hu
Conghui He
L. Zhang
DD
44
2
0
28 Feb 2025
Learning Differentially Private Diffusion Models via Stochastic
  Adversarial Distillation
Learning Differentially Private Diffusion Models via Stochastic Adversarial Distillation
Bochao Liu
Pengju Wang
Shiming Ge
21
1
0
27 Aug 2024
Not All Samples Should Be Utilized Equally: Towards Understanding and
  Improving Dataset Distillation
Not All Samples Should Be Utilized Equally: Towards Understanding and Improving Dataset Distillation
Shaobo Wang
Yantai Yang
Qilong Wang
Kaixin Li
Linfeng Zhang
Junchi Yan
DD
28
4
0
22 Aug 2024
One-Shot Collaborative Data Distillation
One-Shot Collaborative Data Distillation
William Holland
Chandra Thapa
Sarah Ali Siddiqui
Wei Shao
S. Çamtepe
DD
FedML
30
0
0
05 Aug 2024
DiLM: Distilling Dataset into Language Model for Text-level Dataset
  Distillation
DiLM: Distilling Dataset into Language Model for Text-level Dataset Distillation
Aru Maekawa
Satoshi Kosugi
Kotaro Funakoshi
Manabu Okumura
DD
23
10
0
30 Mar 2024
Towards Biologically Plausible and Private Gene Expression Data
  Generation
Towards Biologically Plausible and Private Gene Expression Data Generation
Dingfan Chen
Marie Oestreich
Tejumade Afonja
Raouf Kerkouche
Matthias Becker
Mario Fritz
SyDa
8
3
0
07 Feb 2024
Importance-Aware Adaptive Dataset Distillation
Importance-Aware Adaptive Dataset Distillation
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
19
6
0
29 Jan 2024
Boosting the Cross-Architecture Generalization of Dataset Distillation
  through an Empirical Study
Boosting the Cross-Architecture Generalization of Dataset Distillation through an Empirical Study
Lirui Zhao
Yu-xin Zhang
Fei Chao
Rongrong Ji
11
0
0
09 Dec 2023
AST: Effective Dataset Distillation through Alignment with Smooth and
  High-Quality Expert Trajectories
AST: Effective Dataset Distillation through Alignment with Smooth and High-Quality Expert Trajectories
Jiyuan Shen
Wenzhuo Yang
Kwok-Yan Lam
DD
15
1
0
16 Oct 2023
Towards Lossless Dataset Distillation via Difficulty-Aligned Trajectory
  Matching
Towards Lossless Dataset Distillation via Difficulty-Aligned Trajectory Matching
Ziyao Guo
Kai Wang
George Cazenavette
Hui Li
Kaipeng Zhang
Yang You
DD
19
61
0
09 Oct 2023
A Unified View of Differentially Private Deep Generative Modeling
A Unified View of Differentially Private Deep Generative Modeling
Dingfan Chen
Raouf Kerkouche
Mario Fritz
SyDa
8
4
0
27 Sep 2023
On the Size and Approximation Error of Distilled Sets
On the Size and Approximation Error of Distilled Sets
Alaa Maalouf
M. Tukan
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
13
4
0
23 May 2023
DPMLBench: Holistic Evaluation of Differentially Private Machine
  Learning
DPMLBench: Holistic Evaluation of Differentially Private Machine Learning
Chengkun Wei
Ming-Hui Zhao
Zhikun Zhang
Min Chen
Wenlong Meng
Bodong Liu
Yuan-shuo Fan
Wenzhi Chen
14
11
0
10 May 2023
A Comprehensive Study on Dataset Distillation: Performance, Privacy,
  Robustness and Fairness
A Comprehensive Study on Dataset Distillation: Performance, Privacy, Robustness and Fairness
Zongxiong Chen
Jiahui Geng
Derui Zhu
Herbert Woisetschlaeger
Qing Li
Sonja Schimmler
Ruben Mayer
Chunming Rong
DD
17
9
0
05 May 2023
A Survey on Dataset Distillation: Approaches, Applications and Future
  Directions
A Survey on Dataset Distillation: Approaches, Applications and Future Directions
Jiahui Geng
Zongxiong Chen
Yuandou Wang
Herbert Woisetschlaeger
Sonja Schimmler
Ruben Mayer
Zhiming Zhao
Chunming Rong
DD
55
26
0
03 May 2023
Differentially Private Neural Tangent Kernels for Privacy-Preserving
  Data Generation
Differentially Private Neural Tangent Kernels for Privacy-Preserving Data Generation
Yilin Yang
Kamil Adamczewski
Danica J. Sutherland
Xiaoxiao Li
Mijung Park
12
14
0
03 Mar 2023
Differentially Private Diffusion Models Generate Useful Synthetic Images
Differentially Private Diffusion Models Generate Useful Synthetic Images
Sahra Ghalebikesabi
Leonard Berrada
Sven Gowal
Ira Ktena
Robert Stanforth
Jamie Hayes
Soham De
Samuel L. Smith
Olivia Wiles
Borja Balle
DiffM
16
69
0
27 Feb 2023
Private GANs, Revisited
Private GANs, Revisited
Alex Bie
Gautam Kamath
Guojun Zhang
4
14
0
06 Feb 2023
FedLAP-DP: Federated Learning by Sharing Differentially Private Loss
  Approximations
FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations
Hui-Po Wang
Dingfan Chen
Raouf Kerkouche
Mario Fritz
FedML
DD
6
4
0
02 Feb 2023
Differentially Private Kernel Inducing Points using features from
  ScatterNets (DP-KIP-ScatterNet) for Privacy Preserving Data Distillation
Differentially Private Kernel Inducing Points using features from ScatterNets (DP-KIP-ScatterNet) for Privacy Preserving Data Distillation
Margarita Vinaroz
M. Park
DD
12
0
0
31 Jan 2023
Dataset Distillation: A Comprehensive Review
Dataset Distillation: A Comprehensive Review
Ruonan Yu
Songhua Liu
Xinchao Wang
DD
27
121
0
17 Jan 2023
A Comprehensive Survey of Dataset Distillation
A Comprehensive Survey of Dataset Distillation
Shiye Lei
Dacheng Tao
DD
31
87
0
13 Jan 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
17
73
0
11 Jan 2023
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
138
347
0
25 Sep 2021
Dataset Condensation with Differentiable Siamese Augmentation
Dataset Condensation with Differentiable Siamese Augmentation
Bo-Lu Zhao
Hakan Bilen
DD
189
288
0
16 Feb 2021
1