Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.05520
Cited By
Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems
10 November 2022
A. Thangamuthu
Gunjan Kumar
S. Bishnoi
Ravinder Bhattoo
N. M. A. Krishnan
Sayan Ranu
AI4CE
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Unravelling the Performance of Physics-informed Graph Neural Networks for Dynamical Systems"
7 / 7 papers shown
Title
Graph ODEs and Beyond: A Comprehensive Survey on Integrating Differential Equations with Graph Neural Networks
Z. Liu
Xiaoda Wang
Bohan Wang
Zijie Huang
Carl Yang
Wei-dong Jin
AI4TS
AI4CE
41
0
0
29 Mar 2025
Towards Effective and General Graph Unlearning via Mutual Evolution
Xunkai Li
Yulin Zhao
Zhengyu Wu
Wentao Zhang
Ronghua Li
Guoren Wang
MU
12
13
0
22 Jan 2024
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian Graph Neural Networks
S. Bishnoi
Ravinder Bhattoo
J. Jayadeva
Sayan Ranu
N. M. A. Krishnan
PINN
AI4CE
11
1
0
11 Jul 2023
Global Counterfactual Explainer for Graph Neural Networks
Mert Kosan
Zexi Huang
Sourav Medya
Sayan Ranu
Ambuj K. Singh
11
47
0
21 Oct 2022
Extending Lagrangian and Hamiltonian Neural Networks with Differentiable Contact Models
Yaofeng Desmond Zhong
Biswadip Dey
Amit Chakraborty
50
34
0
12 Feb 2021
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
115
364
0
10 Mar 2020
Interaction Networks for Learning about Objects, Relations and Physics
Peter W. Battaglia
Razvan Pascanu
Matthew Lai
Danilo Jimenez Rezende
Koray Kavukcuoglu
AI4CE
OCL
PINN
GNN
252
1,394
0
01 Dec 2016
1