ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.06130
  4. Cited By
Physically Consistent Neural ODEs for Learning Multi-Physics Systems

Physically Consistent Neural ODEs for Learning Multi-Physics Systems

11 November 2022
M. Zakwan
L. D. Natale
B. Svetozarevic
Philipp Heer
Colin N. Jones
Giancarlo Ferrari-Trecate
    PINN
    AI4CE
ArXivPDFHTML

Papers citing "Physically Consistent Neural ODEs for Learning Multi-Physics Systems"

4 / 4 papers shown
Title
Universal Approximation Property of Hamiltonian Deep Neural Networks
Universal Approximation Property of Hamiltonian Deep Neural Networks
M. Zakwan
M. d’Angelo
Giancarlo Ferrari-Trecate
26
5
0
21 Mar 2023
Physically Consistent Neural Networks for building thermal modeling:
  theory and analysis
Physically Consistent Neural Networks for building thermal modeling: theory and analysis
L. D. Natale
B. Svetozarevic
Philipp Heer
Colin N. Jones
PINN
AI4CE
44
83
0
06 Dec 2021
Lagrangian Neural Networks
Lagrangian Neural Networks
M. Cranmer
S. Greydanus
Stephan Hoyer
Peter W. Battaglia
D. Spergel
S. Ho
PINN
121
419
0
10 Mar 2020
Symplectic Recurrent Neural Networks
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
139
219
0
29 Sep 2019
1