Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.06530
Cited By
Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning
12 November 2022
Christopher A. Choquette-Choo
H. B. McMahan
Keith Rush
Abhradeep Thakurta
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning"
36 / 36 papers shown
Title
Binned Group Algebra Factorization for Differentially Private Continual Counting
Monika Henzinger
Nikita P. Kalinin
Jalaj Upadhyay
23
0
0
06 Apr 2025
Empirical Privacy Variance
Yuzheng Hu
Fan Wu
Ruicheng Xian
Yuhang Liu
Lydia Zakynthinou
Pritish Kamath
Chiyuan Zhang
David A. Forsyth
62
0
0
16 Mar 2025
Data value estimation on private gradients
Zijian Zhou
Xinyi Xu
Daniela Rus
Bryan Kian Hsiang Low
72
0
0
22 Dec 2024
Towards Privacy-Preserving Medical Imaging: Federated Learning with Differential Privacy and Secure Aggregation Using a Modified ResNet Architecture
Mohamad Haj Fares
Ahmed Mohamed Saad Emam Saad
OOD
MedIm
68
1
0
01 Dec 2024
DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning using Packed Secret Sharing
Alexander Bienstock
Ujjwal Kumar
Antigoni Polychroniadou
FedML
27
0
0
21 Oct 2024
Near Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
36
5
0
08 Oct 2024
Differentially Private Multimodal Laplacian Dropout (DP-MLD) for EEG Representative Learning
Xiaowen Fu
Bingxin Wang
Xinzhou Guo
Guoqing Liu
Yang Xiang
17
0
0
20 Sep 2024
A Hassle-free Algorithm for Private Learning in Practice: Don't Use Tree Aggregation, Use BLTs
H. B. McMahan
Zheng Xu
Yanxiang Zhang
FedML
32
5
0
16 Aug 2024
Fine-Tuning Large Language Models with User-Level Differential Privacy
Zachary Charles
Arun Ganesh
Ryan McKenna
H. B. McMahan
Nicole Mitchell
Krishna Pillutla
Keith Rush
21
11
0
10 Jul 2024
Continual Counting with Gradual Privacy Expiration
Joel Daniel Andersson
Monika Henzinger
Rasmus Pagh
Teresa Anna Steiner
Jalaj Upadhyay
43
1
0
06 Jun 2024
Click Without Compromise: Online Advertising Measurement via Per User Differential Privacy
Yingtai Xiao
Jian Du
Shikun Zhang
Qiang Yan
Danfeng Zhang
Daniel Kifer
Daniel Kifer
30
2
0
04 Jun 2024
Banded Square Root Matrix Factorization for Differentially Private Model Training
Nikita Kalinin
Christoph H. Lampert
26
5
0
22 May 2024
Improved Communication-Privacy Trade-offs in
L
2
L_2
L
2
Mean Estimation under Streaming Differential Privacy
Wei-Ning Chen
Berivan Isik
Peter Kairouz
Albert No
Sewoong Oh
Zheng Xu
39
3
0
02 May 2024
Teach LLMs to Phish: Stealing Private Information from Language Models
Ashwinee Panda
Christopher A. Choquette-Choo
Zhengming Zhang
Yaoqing Yang
Prateek Mittal
PILM
19
20
0
01 Mar 2024
Auditing Private Prediction
Karan Chadha
Matthew Jagielski
Nicolas Papernot
Christopher A. Choquette-Choo
Milad Nasr
23
4
0
14 Feb 2024
Robust and Actively Secure Serverless Collaborative Learning
Olive Franzese
Adam Dziedzic
Christopher A. Choquette-Choo
Mark R. Thomas
Muhammad Ahmad Kaleem
Stephan Rabanser
Cong Fang
Somesh Jha
Nicolas Papernot
Xiao Wang
OOD
15
2
0
25 Oct 2023
Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
18
9
0
24 Oct 2023
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Christopher A. Choquette-Choo
Krishnamurthy Dvijotham
Krishna Pillutla
Arun Ganesh
Thomas Steinke
Abhradeep Thakurta
17
13
0
10 Oct 2023
Privacy Side Channels in Machine Learning Systems
Edoardo Debenedetti
Giorgio Severi
Nicholas Carlini
Christopher A. Choquette-Choo
Matthew Jagielski
Milad Nasr
Eric Wallace
Florian Tramèr
MIALM
29
38
0
11 Sep 2023
Private Federated Learning with Autotuned Compression
Enayat Ullah
Christopher A. Choquette-Choo
Peter Kairouz
Sewoong Oh
FedML
11
6
0
20 Jul 2023
A Unifying Framework for Differentially Private Sums under Continual Observation
Monika Henzinger
Jalaj Upadhyay
Sarvagya Upadhyay
FedML
24
14
0
18 Jul 2023
A Smooth Binary Mechanism for Efficient Private Continual Observation
Joel Daniel Andersson
Rasmus Pagh
13
11
0
16 Jun 2023
(Amplified) Banded Matrix Factorization: A unified approach to private training
Christopher A. Choquette-Choo
Arun Ganesh
Ryan McKenna
H. B. McMahan
Keith Rush
Abhradeep Thakurta
Zheng Xu
FedML
13
35
0
13 Jun 2023
Federated Learning of Gboard Language Models with Differential Privacy
Zheng Xu
Yanxiang Zhang
Galen Andrew
Christopher A. Choquette-Choo
Peter Kairouz
H. B. McMahan
Jesse Rosenstock
Yuanbo Zhang
FedML
24
76
0
29 May 2023
An Empirical Evaluation of Federated Contextual Bandit Algorithms
Alekh Agarwal
H. B. McMahan
Zheng Xu
FedML
11
2
0
17 Mar 2023
How to DP-fy ML: A Practical Guide to Machine Learning with Differential Privacy
Natalia Ponomareva
Hussein Hazimeh
Alexey Kurakin
Zheng Xu
Carson E. Denison
H. B. McMahan
Sergei Vassilvitskii
Steve Chien
Abhradeep Thakurta
94
167
0
01 Mar 2023
On the Convergence of Federated Averaging with Cyclic Client Participation
Yae Jee Cho
Pranay Sharma
Gauri Joshi
Zheng Xu
Satyen Kale
Tong Zhang
FedML
22
27
0
06 Feb 2023
One-shot Empirical Privacy Estimation for Federated Learning
Galen Andrew
Peter Kairouz
Sewoong Oh
Alina Oprea
H. B. McMahan
Vinith M. Suriyakumar
FedML
13
32
0
06 Feb 2023
Gradient Descent with Linearly Correlated Noise: Theory and Applications to Differential Privacy
Anastasia Koloskova
Ryan McKenna
Zachary B. Charles
Keith Rush
Brendan McMahan
27
8
0
02 Feb 2023
General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean Estimation
Aleksandar Nikolov
Haohua Tang
26
4
0
31 Jan 2023
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
13
18
0
22 Jan 2023
LIA: Privacy-Preserving Data Quality Evaluation in Federated Learning Using a Lazy Influence Approximation
Ljubomir Rokvic
Panayiotis Danassis
Sai Praneeth Karimireddy
Boi Faltings
TDI
15
1
0
23 May 2022
Constant matters: Fine-grained Complexity of Differentially Private Continual Observation
Hendrik Fichtenberger
Monika Henzinger
Jalaj Upadhyay
24
20
0
23 Feb 2022
Practical and Private (Deep) Learning without Sampling or Shuffling
Peter Kairouz
Brendan McMahan
Shuang Song
Om Thakkar
Abhradeep Thakurta
Zheng Xu
FedML
178
154
0
26 Feb 2021
Extracting Training Data from Large Language Models
Nicholas Carlini
Florian Tramèr
Eric Wallace
Matthew Jagielski
Ariel Herbert-Voss
...
Tom B. Brown
D. Song
Ulfar Erlingsson
Alina Oprea
Colin Raffel
MLAU
SILM
267
1,808
0
14 Dec 2020
Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity
Ulfar Erlingsson
Vitaly Feldman
Ilya Mironov
A. Raghunathan
Kunal Talwar
Abhradeep Thakurta
134
420
0
29 Nov 2018
1