ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07482
  4. Cited By
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism

Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism

14 November 2022
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
ArXivPDFHTML

Papers citing "Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism"

2 / 2 papers shown
Title
Scalable learning of potentials to predict time-dependent Hartree-Fock
  dynamics
Scalable learning of potentials to predict time-dependent Hartree-Fock dynamics
Harish S. Bhat
Prachi Gupta
Christine M Isborn
25
1
0
08 Aug 2024
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
190
1,229
0
08 Jan 2021
1