Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.08761
Cited By
Separable PINN: Mitigating the Curse of Dimensionality in Physics-Informed Neural Networks
16 November 2022
Junwoo Cho
Seungtae Nam
Hyunmo Yang
S. Yun
Youngjoon Hong
Eunbyung Park
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Separable PINN: Mitigating the Curse of Dimensionality in Physics-Informed Neural Networks"
5 / 5 papers shown
Title
Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
Benjamin Moseley
Andrew Markham
T. Nissen‐Meyer
PINN
42
209
0
16 Jul 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
93
126
0
14 Dec 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
203
2,282
0
18 Oct 2020
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
184
141
0
01 May 2020
Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems
J. Willard
X. Jia
Shaoming Xu
M. Steinbach
Vipin Kumar
AI4CE
88
387
0
10 Mar 2020
1