ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.09419
  4. Cited By
Physics-Informed Koopman Network

Physics-Informed Koopman Network

17 November 2022
Yuying Liu
A. Sholokhov
Hassan Mansour
S. Nabi
    AI4CE
ArXivPDFHTML

Papers citing "Physics-Informed Koopman Network"

8 / 8 papers shown
Title
Physics-informed Split Koopman Operators for Data-efficient Soft Robotic Simulation
Physics-informed Split Koopman Operators for Data-efficient Soft Robotic Simulation
Eron Ristich
Lei Zhang
Yi Ren
Jiefeng Sun
55
0
0
31 Jan 2025
Automated Global Analysis of Experimental Dynamics through
  Low-Dimensional Linear Embeddings
Automated Global Analysis of Experimental Dynamics through Low-Dimensional Linear Embeddings
Samuel A. Moore
B. Mann
Boyuan Chen
AI4CE
19
1
0
01 Nov 2024
Extended dynamic mode decomposition with dictionary learning using
  neural ordinary differential equations
Extended dynamic mode decomposition with dictionary learning using neural ordinary differential equations
H. Terao
Sho Shirasaka
Hideyuki Suzuki
16
6
0
01 Oct 2021
Parallel Physics-Informed Neural Networks via Domain Decomposition
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
98
272
0
20 Apr 2021
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
489
0
09 Feb 2021
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
NVIDIA SimNet^{TM}: an AI-accelerated multi-physics simulation framework
O. Hennigh
S. Narasimhan
M. A. Nabian
Akshay Subramaniam
Kaustubh Tangsali
M. Rietmann
J. Ferrandis
Wonmin Byeon
Z. Fang
S. Choudhry
PINN
AI4CE
91
125
0
14 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain
  Decomposition
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
1