ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.10344
  4. Cited By
Physics-informed neural networks for operator equations with stochastic
  data

Physics-informed neural networks for operator equations with stochastic data

15 November 2022
Paul Escapil-Inchauspé
G. A. Ruz
ArXivPDFHTML

Papers citing "Physics-informed neural networks for operator equations with stochastic data"

4 / 4 papers shown
Title
h-analysis and data-parallel physics-informed neural networks
h-analysis and data-parallel physics-informed neural networks
Paul Escapil-Inchauspé
G. A. Ruz
PINN
AI4CE
22
2
0
17 Feb 2023
Hyper-parameter tuning of physics-informed neural networks: Application
  to Helmholtz problems
Hyper-parameter tuning of physics-informed neural networks: Application to Helmholtz problems
Paul Escapil-Inchauspé
G. A. Ruz
24
32
0
13 May 2022
Physics-informed neural networks with hard constraints for inverse
  design
Physics-informed neural networks with hard constraints for inverse design
Lu Lu
R. Pestourie
Wenjie Yao
Zhicheng Wang
F. Verdugo
Steven G. Johnson
PINN
39
489
0
09 Feb 2021
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
1