ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.11058
15
3

Convolutional Filtering on Sampled Manifolds

20 November 2022
Zhiyang Wang
Luana Ruiz
Alejandro Ribeiro
ArXivPDFHTML
Abstract

The increasing availability of geometric data has motivated the need for information processing over non-Euclidean domains modeled as manifolds. The building block for information processing architectures with desirable theoretical properties such as invariance and stability is convolutional filtering. Manifold convolutional filters are defined from the manifold diffusion sequence, constructed by successive applications of the Laplace-Beltrami operator to manifold signals. However, the continuous manifold model can only be accessed by sampling discrete points and building an approximate graph model from the sampled manifold. Effective linear information processing on the manifold requires quantifying the error incurred when approximating manifold convolutions with graph convolutions. In this paper, we derive a non-asymptotic error bound for this approximation, showing that convolutional filtering on the sampled manifold converges to continuous manifold filtering. Our findings are further demonstrated empirically on a problem of navigation control.

View on arXiv
Comments on this paper