ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.11058
  4. Cited By
Convolutional Filtering on Sampled Manifolds

Convolutional Filtering on Sampled Manifolds

20 November 2022
Zhiyang Wang
Luana Ruiz
Alejandro Ribeiro
ArXivPDFHTML

Papers citing "Convolutional Filtering on Sampled Manifolds"

9 / 9 papers shown
Title
Manifold Filter-Combine Networks
Manifold Filter-Combine Networks
Joyce A. Chew
E. Brouwer
Smita Krishnaswamy
Deanna Needell
Michael Perlmutter
Michael Perlmutter
GNN
26
0
0
08 Jul 2023
Geometric Graph Filters and Neural Networks: Limit Properties and
  Discriminability Trade-offs
Geometric Graph Filters and Neural Networks: Limit Properties and Discriminability Trade-offs
Zhiyang Wang
Luana Ruiz
Alejandro Ribeiro
GNN
38
7
0
29 May 2023
A Convergence Rate for Manifold Neural Networks
A Convergence Rate for Manifold Neural Networks
Joyce A. Chew
Deanna Needell
Michael Perlmutter
30
5
0
23 Dec 2022
Convolutional Neural Networks on Manifolds: From Graphs and Back
Convolutional Neural Networks on Manifolds: From Graphs and Back
Zhiyang Wang
Luana Ruiz
Alejandro Ribeiro
3DPC
GNN
40
14
0
01 Oct 2022
Learning Globally Smooth Functions on Manifolds
Learning Globally Smooth Functions on Manifolds
J. Cerviño
Luiz F. O. Chamon
B. Haeffele
René Vidal
Alejandro Ribeiro
29
5
0
01 Oct 2022
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud
Weijing Shi
Ragunathan
R. Rajkumar
3DPC
165
738
0
02 Mar 2020
Convolutional Neural Network Architectures for Signals Supported on
  Graphs
Convolutional Neural Network Architectures for Signals Supported on Graphs
Fernando Gama
A. Marques
G. Leus
Alejandro Ribeiro
132
285
0
01 May 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
259
3,239
0
24 Nov 2016
1