ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.11981
  4. Cited By
Bayesian Inversion with Neural Operator (BINO) for Modeling
  Subdiffusion: Forward and Inverse Problems

Bayesian Inversion with Neural Operator (BINO) for Modeling Subdiffusion: Forward and Inverse Problems

22 November 2022
Xiongbin Yan
Z. Xu
Zheng Ma
ArXivPDFHTML

Papers citing "Bayesian Inversion with Neural Operator (BINO) for Modeling Subdiffusion: Forward and Inverse Problems"

3 / 3 papers shown
Title
Laplace-fPINNs: Laplace-based fractional physics-informed neural
  networks for solving forward and inverse problems of subdiffusion
Laplace-fPINNs: Laplace-based fractional physics-informed neural networks for solving forward and inverse problems of subdiffusion
Xiongbin Yan
Zhi-Qin John Xu
Zheng Ma
29
2
0
03 Apr 2023
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
205
2,282
0
18 Oct 2020
Multi-scale Deep Neural Network (MscaleDNN) for Solving
  Poisson-Boltzmann Equation in Complex Domains
Multi-scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains
Ziqi Liu
Wei Cai
Zhi-Qin John Xu
AI4CE
206
122
0
22 Jul 2020
1