Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.15664
Cited By
Utilising physics-guided deep learning to overcome data scarcity
24 November 2022
Jinshuai Bai
Laith Alzubaidi
Qingxia Wang
E. Kuhl
Bennamoun
Yuantong T. Gu
PINN
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Utilising physics-guided deep learning to overcome data scarcity"
7 / 7 papers shown
Title
Physics-informed radial basis network (PIRBN): A local approximating neural network for solving nonlinear PDEs
Jinshuai Bai
Guirong Liu
Ashish Gupta
Laith Alzubaidi
Xinzhu Feng
Yuantong T. Gu
PINN
14
1
0
13 Apr 2023
Physics-informed neural networks to learn cardiac fiber orientation from multiple electroanatomical maps
Carlos Ruiz Herrera
Thomas Grandits
Gernot Plank
P. Perdikaris
F. Sahli Costabal
Simone Pezzuto
27
38
0
28 Jan 2022
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
98
271
0
20 Apr 2021
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
Sifan Wang
Hanwen Wang
P. Perdikaris
131
437
0
18 Dec 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
170
755
0
13 Mar 2020
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
117
506
0
11 Mar 2020
An Energy Approach to the Solution of Partial Differential Equations in Computational Mechanics via Machine Learning: Concepts, Implementation and Applications
E. Samaniego
C. Anitescu
S. Goswami
Vien Minh Nguyen-Thanh
Hongwei Guo
Khader M. Hamdia
Timon Rabczuk
X. Zhuang
PINN
AI4CE
145
1,333
0
27 Aug 2019
1