Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.15924
Cited By
Weakly Supervised Learning Significantly Reduces the Number of Labels Required for Intracranial Hemorrhage Detection on Head CT
29 November 2022
Jacopo Teneggi
P. Yi
Jeremias Sulam
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Weakly Supervised Learning Significantly Reduces the Number of Labels Required for Intracranial Hemorrhage Detection on Head CT"
5 / 5 papers shown
Title
Smooth Attention for Deep Multiple Instance Learning: Application to CT Intracranial Hemorrhage Detection
Yunan Wu
Francisco M. Castro-Macías
Pablo Morales-Álvarez
Rafael Molina
Aggelos K. Katsaggelos
27
2
0
18 Jul 2023
SHAP-XRT: The Shapley Value Meets Conditional Independence Testing
Jacopo Teneggi
Beepul Bharti
Yaniv Romano
Jeremias Sulam
FAtt
20
3
0
14 Jul 2022
Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
Zhenzhen Wang
Carla Saoud
A. Popel
Aaron W. James
Aleksander S. Popel
Jeremias Sulam
21
20
0
22 Sep 2021
Transformers in Vision: A Survey
Salman Khan
Muzammal Naseer
Munawar Hayat
Syed Waqas Zamir
F. Khan
M. Shah
ViT
227
2,428
0
04 Jan 2021
TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning
Fernando Pérez-García
Rachel Sparks
Sébastien Ourselin
MedIm
LM&MA
135
426
0
09 Mar 2020
1