Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.16499
Cited By
Finding Differences Between Transformers and ConvNets Using Counterfactual Simulation Testing
29 November 2022
Nataniel Ruiz
Sarah Adel Bargal
Cihang Xie
Kate Saenko
Stan Sclaroff
ViT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Finding Differences Between Transformers and ConvNets Using Counterfactual Simulation Testing"
8 / 8 papers shown
Title
D-Feat Occlusions: Diffusion Features for Robustness to Partial Visual Occlusions in Object Recognition
Rupayan Mallick
Sibo Dong
Nataniel Ruiz
Sarah Adel Bargal
DiffM
44
0
0
08 Apr 2025
ConvNet vs Transformer, Supervised vs CLIP: Beyond ImageNet Accuracy
Kirill Vishniakov
Zhiqiang Shen
Zhuang Liu
CLIP
14
15
0
15 Nov 2023
Hardwiring ViT Patch Selectivity into CNNs using Patch Mixing
Ariel N. Lee
Sarah Adel Bargal
Janavi Kasera
Stan Sclaroff
Kate Saenko
Nataniel Ruiz
18
0
0
30 Jun 2023
ModelDiff: A Framework for Comparing Learning Algorithms
Harshay Shah
Sung Min Park
Andrew Ilyas
A. Madry
SyDa
25
26
0
22 Nov 2022
Are Transformers More Robust Than CNNs?
Yutong Bai
Jieru Mei
Alan Yuille
Cihang Xie
ViT
AAML
181
257
0
10 Nov 2021
Intriguing Properties of Vision Transformers
Muzammal Naseer
Kanchana Ranasinghe
Salman Khan
Munawar Hayat
F. Khan
Ming-Hsuan Yang
ViT
251
618
0
21 May 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
263
3,604
0
24 Feb 2021
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,237
0
25 Aug 2016
1