Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.16605
Cited By
Top-Down Synthesis for Library Learning
29 November 2022
Matthew Bowers
Theo X. Olausson
Catherine Wong
Gabriel Grand
J. Tenenbaum
Kevin Ellis
Armando Solar-Lezama
DiffM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Top-Down Synthesis for Library Learning"
7 / 7 papers shown
Title
MeMo: Meaningful, Modular Controllers via Noise Injection
Megan Tjandrasuwita
Jie Xu
Armando Solar-Lezama
Wojciech Matusik
21
0
0
24 May 2024
ReGAL: Refactoring Programs to Discover Generalizable Abstractions
Elias Stengel-Eskin
Archiki Prasad
Mohit Bansal
25
13
0
29 Jan 2024
ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives
R. K. Jones
Paul Guerrero
Niloy J. Mitra
Daniel E. Ritchie
21
23
0
09 May 2023
Anti-unification and Generalization: A Survey
David M. Cerna
Temur Kutsia
AI4CE
23
17
0
01 Feb 2023
Neurosymbolic Programming for Science
Jennifer J. Sun
Megan Tjandrasuwita
Atharva Sehgal
Armando Solar-Lezama
Swarat Chaudhuri
Yisong Yue
Omar Costilla-Reyes
NAI
39
12
0
10 Oct 2022
Learning Differentiable Programs with Admissible Neural Heuristics
Ameesh Shah
Eric Zhan
Jennifer J. Sun
Abhinav Verma
Yisong Yue
Swarat Chaudhuri
140
43
0
23 Jul 2020
DreamCoder: Growing generalizable, interpretable knowledge with wake-sleep Bayesian program learning
Kevin Ellis
Catherine Wong
Maxwell Nye
Mathias Sablé-Meyer
Luc Cary
Lucas Morales
Luke B. Hewitt
Armando Solar-Lezama
J. Tenenbaum
NAI
CLL
22
190
0
15 Jun 2020
1