ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.16669
  4. Cited By
FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient
  Federated Learning

FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient Federated Learning

30 November 2022
Young Geun Kim
Carole-Jean Wu
    FedML
ArXivPDFHTML

Papers citing "FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient Federated Learning"

7 / 7 papers shown
Title
Training Machine Learning models at the Edge: A Survey
Training Machine Learning models at the Edge: A Survey
Aymen Rayane Khouas
Mohamed Reda Bouadjenek
Hakim Hacid
Sunil Aryal
24
9
0
05 Mar 2024
Exploring and Exploiting Data Heterogeneity in Recommendation
Exploring and Exploiting Data Heterogeneity in Recommendation
Zimu Wang
Jiashuo Liu
Hao Zou
Xingxuan Zhang
Yue He
Dongxu Liang
Peng Cui
19
2
0
21 May 2023
Green Federated Learning
Green Federated Learning
Ashkan Yousefpour
Sheng Guo
Ashish Shenoy
Sayan Ghosh
Pierre Stock
Kiwan Maeng
Schalk-Willem Kruger
Michael G. Rabbat
Carole-Jean Wu
Ilya Mironov
FedML
AI4CE
26
10
0
26 Mar 2023
Papaya: Practical, Private, and Scalable Federated Learning
Papaya: Practical, Private, and Scalable Federated Learning
Dzmitry Huba
John Nguyen
Kshitiz Malik
Ruiyu Zhu
Michael G. Rabbat
...
H. Srinivas
Kaikai Wang
Anthony Shoumikhin
Jesik Min
Mani Malek
FedML
97
133
0
08 Nov 2021
FedProc: Prototypical Contrastive Federated Learning on Non-IID data
FedProc: Prototypical Contrastive Federated Learning on Non-IID data
Xutong Mu
Yulong Shen
Ke Cheng
Xueli Geng
Jiaxuan Fu
Tao Zhang
Zhiwei Zhang
FedML
33
161
0
25 Sep 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Federated Learning on Non-IID Data Silos: An Experimental Study
Q. Li
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
85
936
0
03 Feb 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
1