Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.16669
Cited By
FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient Federated Learning
30 November 2022
Young Geun Kim
Carole-Jean Wu
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"FedGPO: Heterogeneity-Aware Global Parameter Optimization for Efficient Federated Learning"
7 / 7 papers shown
Title
Training Machine Learning models at the Edge: A Survey
Aymen Rayane Khouas
Mohamed Reda Bouadjenek
Hakim Hacid
Sunil Aryal
24
9
0
05 Mar 2024
Exploring and Exploiting Data Heterogeneity in Recommendation
Zimu Wang
Jiashuo Liu
Hao Zou
Xingxuan Zhang
Yue He
Dongxu Liang
Peng Cui
19
2
0
21 May 2023
Green Federated Learning
Ashkan Yousefpour
Sheng Guo
Ashish Shenoy
Sayan Ghosh
Pierre Stock
Kiwan Maeng
Schalk-Willem Kruger
Michael G. Rabbat
Carole-Jean Wu
Ilya Mironov
FedML
AI4CE
26
10
0
26 Mar 2023
Papaya: Practical, Private, and Scalable Federated Learning
Dzmitry Huba
John Nguyen
Kshitiz Malik
Ruiyu Zhu
Michael G. Rabbat
...
H. Srinivas
Kaikai Wang
Anthony Shoumikhin
Jesik Min
Mani Malek
FedML
97
133
0
08 Nov 2021
FedProc: Prototypical Contrastive Federated Learning on Non-IID data
Xutong Mu
Yulong Shen
Ke Cheng
Xueli Geng
Jiaxuan Fu
Tao Zhang
Zhiwei Zhang
FedML
33
161
0
25 Sep 2021
Federated Learning on Non-IID Data Silos: An Experimental Study
Q. Li
Yiqun Diao
Quan Chen
Bingsheng He
FedML
OOD
85
936
0
03 Feb 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,214
0
17 Apr 2017
1