ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.00328
  4. Cited By
Differentially Private Learning with Per-Sample Adaptive Clipping

Differentially Private Learning with Per-Sample Adaptive Clipping

1 December 2022
Tianyu Xia
Shuheng Shen
Su Yao
Xinyi Fu
Ke Xu
Xiaolong Xu
Xingbo Fu
ArXivPDFHTML

Papers citing "Differentially Private Learning with Per-Sample Adaptive Clipping"

9 / 9 papers shown
Title
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
PCDP-SGD: Improving the Convergence of Differentially Private SGD via Projection in Advance
Haichao Sha
Ruixuan Liu
Yi-xiao Liu
Hong Chen
35
1
0
06 Dec 2023
ALI-DPFL: Differentially Private Federated Learning with Adaptive Local
  Iterations
ALI-DPFL: Differentially Private Federated Learning with Adaptive Local Iterations
Xinpeng Ling
Jie Fu
Kuncan Wang
Haitao Liu
Zhili Chen
FedML
17
2
0
21 Aug 2023
Differentially Private Natural Language Models: Recent Advances and
  Future Directions
Differentially Private Natural Language Models: Recent Advances and Future Directions
Lijie Hu
Ivan Habernal
Lei Shen
Di Wang
AAML
13
18
0
22 Jan 2023
Adaptive Differentially Private Empirical Risk Minimization
Adaptive Differentially Private Empirical Risk Minimization
Xiaoxia Wu
Lingxiao Wang
Irina Cristali
Quanquan Gu
Rebecca Willett
13
6
0
14 Oct 2021
Differentially Private Fine-tuning of Language Models
Differentially Private Fine-tuning of Language Models
Da Yu
Saurabh Naik
A. Backurs
Sivakanth Gopi
Huseyin A. Inan
...
Y. Lee
Andre Manoel
Lukas Wutschitz
Sergey Yekhanin
Huishuai Zhang
134
344
0
13 Oct 2021
Hyperparameter Tuning with Renyi Differential Privacy
Hyperparameter Tuning with Renyi Differential Privacy
Nicolas Papernot
Thomas Steinke
123
119
0
07 Oct 2021
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
144
348
0
25 Sep 2021
Differentially Private Stochastic Optimization: New Results in Convex
  and Non-Convex Settings
Differentially Private Stochastic Optimization: New Results in Convex and Non-Convex Settings
Raef Bassily
Cristóbal Guzmán
Michael Menart
39
54
0
12 Jul 2021
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Tempered Sigmoid Activations for Deep Learning with Differential Privacy
Nicolas Papernot
Abhradeep Thakurta
Shuang Song
Steve Chien
Ulfar Erlingsson
AAML
128
178
0
28 Jul 2020
1