ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.00398
88
12

Distributed Model Predictive Covariance Steering

28 January 2025
A. Saravanos
Isin M. Balci
E. Bakolas
Evangelos A. Theodorou
ArXivPDFHTML
Abstract

This paper proposes Distributed Model Predictive Covariance Steering (DiMPCS) for multi-agent control under stochastic uncertainty. The scope of our approach is to blend covariance steering theory, distributed optimization and model predictive control (MPC) into a single framework that is safe, scalable and decentralized. Initially, we pose a problem formulation that uses the Wasserstein distance to steer the state distributions of a multi-agent system to desired targets, and probabilistic constraints to ensure safety. We then transform this problem into a finite-dimensional optimization one by utilizing a disturbance feedback policy parametrization for covariance steering and a tractable approximation of the safety constraints. To solve the latter problem, we derive a decentralized consensus-based algorithm using the Alternating Direction Method of Multipliers. This method is then extended to a receding horizon form, which yields the proposed DiMPCS algorithm. Simulation experiments on a variety of multi-robot tasks with up to hundreds of robots demonstrate the effectiveness of DiMPCS. The superior scalability and performance of the proposed method is also highlighted through a comparison against related stochastic MPC approaches. Finally, hardware results on a multi-robot platform also verify the applicability of DiMPCS on real systems. A video with all results is available inthis https URL.

View on arXiv
Comments on this paper