ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.01936
  4. Cited By
Democratizing Neural Machine Translation with OPUS-MT

Democratizing Neural Machine Translation with OPUS-MT

4 December 2022
Jörg Tiedemann
Mikko Aulamo
Daria Bakshandaeva
M. Boggia
Stig-Arne Gronroos
Tommi Nieminen
Alessandro Raganato
Yves Scherrer
Raúl Vázquez
Sami Virpioja
ArXivPDFHTML

Papers citing "Democratizing Neural Machine Translation with OPUS-MT"

5 / 5 papers shown
Title
Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Regional Tiny Stories: Using Small Models to Compare Language Learning and Tokenizer Performance
Nirvan Patil
Malhar Abhay Inamdar
Agnivo Gosai
Guruprasad Pathak
Anish Joshi
Aryan Sagavekar
Anish Joshirao
Raj Abhijit Dandekar
Rajat Dandekar
Sreedath Panat
19
0
0
07 Apr 2025
UoR-NCL at SemEval-2025 Task 1: Using Generative LLMs and CLIP Models for Multilingual Multimodal Idiomaticity Representation
UoR-NCL at SemEval-2025 Task 1: Using Generative LLMs and CLIP Models for Multilingual Multimodal Idiomaticity Representation
Thanet Markchom
Tong Wu
Liting Huang
Huizhi Liang
78
1
0
28 Feb 2025
Enabling Low-Resource Language Retrieval: Establishing Baselines for Urdu MS MARCO
Enabling Low-Resource Language Retrieval: Establishing Baselines for Urdu MS MARCO
Umer Butt
Stalin Veranasi
Günter Neumann
74
0
0
17 Dec 2024
Word Alignment by Fine-tuning Embeddings on Parallel Corpora
Word Alignment by Fine-tuning Embeddings on Parallel Corpora
Zi-Yi Dou
Graham Neubig
90
255
0
20 Jan 2021
The Tatoeba Translation Challenge -- Realistic Data Sets for Low
  Resource and Multilingual MT
The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT
Jörg Tiedemann
160
163
0
13 Oct 2020
1