ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.03714
  4. Cited By
Reconstructing Training Data from Model Gradient, Provably

Reconstructing Training Data from Model Gradient, Provably

7 December 2022
Zihan Wang
Jason D. Lee
Qi Lei
    FedML
ArXivPDFHTML

Papers citing "Reconstructing Training Data from Model Gradient, Provably"

5 / 5 papers shown
Title
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
Data Quality in Edge Machine Learning: A State-of-the-Art Survey
M. D. Belgoumri
Mohamed Reda Bouadjenek
Sunil Aryal
Hakim Hacid
41
1
0
01 Jun 2024
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Sheng Liu
Zihan Wang
Yuxiao Chen
Qi Lei
AAML
MIACV
59
4
0
13 Feb 2024
Deconstructing Data Reconstruction: Multiclass, Weight Decay and General
  Losses
Deconstructing Data Reconstruction: Multiclass, Weight Decay and General Losses
G. Buzaglo
Niv Haim
Gilad Yehudai
Gal Vardi
Yakir Oz
Yaniv Nikankin
Michal Irani
28
10
0
04 Jul 2023
Collaborative Learning via Prediction Consensus
Collaborative Learning via Prediction Consensus
Dongyang Fan
Celestine Mendler-Dünner
Martin Jaggi
FedML
29
7
0
29 May 2023
Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth
  Channel and Vulnerability
Sketching for First Order Method: Efficient Algorithm for Low-Bandwidth Channel and Vulnerability
Zhao-quan Song
Yitan Wang
Zheng Yu
Licheng Zhang
FedML
23
28
0
15 Oct 2022
1