ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.04832
  4. Cited By
Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised
  Tomographic Image Denoising

Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised Tomographic Image Denoising

9 December 2022
Fabian Wagner
Mareike Thies
Laura Pfaff
Noah Maul
Sabrina Pechmann
Mingxuan Gu
Jonas Utz
O. Aust
D. Weidner
Georgiana Neag
S. Uderhardt
Jang-Hwan Choi
Andreas K. Maier
ArXivPDFHTML

Papers citing "Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised Tomographic Image Denoising"

1 / 1 papers shown
Title
Ultra Low-Parameter Denoising: Trainable Bilateral Filter Layers in
  Computed Tomography
Ultra Low-Parameter Denoising: Trainable Bilateral Filter Layers in Computed Tomography
Fabian Wagner
Mareike Thies
Mingxuan Gu
Yixing Huang
Sabrina Pechmann
...
O. Aust
S. Uderhardt
G. Schett
S. Christiansen
Andreas K. Maier
MedIm
AI4CE
21
22
0
25 Jan 2022
1