Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
2212.05015
Cited By
v1
v2
v3 (latest)
Robustness Implies Privacy in Statistical Estimation
Symposium on the Theory of Computing (STOC), 2022
9 December 2022
Samuel B. Hopkins
Gautam Kamath
Mahbod Majid
Shyam Narayanan
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Robustness Implies Privacy in Statistical Estimation"
36 / 36 papers shown
Title
Robust Estimation Under Heterogeneous Corruption Rates
Syomantak Chaudhuri
Jerry Li
T. Courtade
FedML
120
0
0
20 Aug 2025
Private Training & Data Generation by Clustering Embeddings
Felix Y. Zhou
Samson Zhou
Vahab Mirrokni
Alessandro Epasto
Vincent Cohen-Addad
186
0
0
20 Jun 2025
Square
χ
χ
χ
PO: Differentially Private and Robust
χ
2
χ^2
χ
2
-Preference Optimization in Offline Direct Alignment
Xingyu Zhou
Yulian Wu
Wenqian Weng
Francesco Orabona
301
0
0
27 May 2025
Private Statistical Estimation via Truncation
Manolis Zampetakis
Felix Zhou
234
0
0
18 May 2025
Sample-Optimal Private Regression in Polynomial Time
Symposium on the Theory of Computing (STOC), 2025
Prashanti Anderson
Ainesh Bakshi
Mahbod Majid
Stefan Tiegel
120
1
0
31 Mar 2025
Optimal Differentially Private Sampling of Unbounded Gaussians
Annual Conference Computational Learning Theory (COLT), 2025
Valentio Iverson
Gautam Kamath
Argyris Mouzakis
307
1
0
03 Mar 2025
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
1.2K
5
0
28 Feb 2025
Tukey Depth Mechanisms for Practical Private Mean Estimation
Gavin Brown
Lydia Zakynthinou
182
0
0
25 Feb 2025
SoS Certificates for Sparse Singular Values and Their Applications: Robust Statistics, Subspace Distortion, and More
Symposium on the Theory of Computing (STOC), 2024
Ilias Diakonikolas
Samuel B. Hopkins
Ankit Pensia
Stefan Tiegel
153
3
0
31 Dec 2024
Optimal Rates for Robust Stochastic Convex Optimization
Symposium on Foundations of Responsible Computing (FRC), 2024
Changyu Gao
Andrew Lowy
Xingyu Zhou
Stephen J. Wright
439
0
0
15 Dec 2024
Sample-Efficient Private Learning of Mixtures of Gaussians
Neural Information Processing Systems (NeurIPS), 2024
Hassan Ashtiani
Mahbod Majid
Shyam Narayanan
FedML
127
0
0
04 Nov 2024
Dimension-free Private Mean Estimation for Anisotropic Distributions
Neural Information Processing Systems (NeurIPS), 2024
Yuval Dagan
Michael I. Jordan
Xuelin Yang
Lydia Zakynthinou
Nikita Zhivotovskiy
355
2
0
01 Nov 2024
Distribution Learnability and Robustness
Shai Ben-David
Alex Bie
Gautam Kamath
Tosca Lechner
312
4
0
25 Jun 2024
Perturb-and-Project: Differentially Private Similarities and Marginals
International Conference on Machine Learning (ICML), 2024
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Vahab Mirrokni
Peilin Zhong
359
1
0
07 Jun 2024
Private Edge Density Estimation for Random Graphs: Optimal, Efficient and Robust
Hongjie Chen
Jingqiu Ding
Yiding Hua
David Steurer
305
3
0
26 May 2024
Lower Bounds for Private Estimation of Gaussian Covariance Matrices under All Reasonable Parameter Regimes
V. S. Portella
Nick Harvey
223
9
0
26 Apr 2024
Private graphon estimation via sum-of-squares
Symposium on the Theory of Computing (STOC), 2024
Hongjie Chen
Jingqiu Ding
Tommaso dÓrsi
Yiding Hua
Chih-Hung Liu
David Steurer
288
2
0
18 Mar 2024
General Inferential Limits Under Differential and Pufferfish Privacy
International Journal of Approximate Reasoning (IJAR), 2024
J. Bailie
Ruobin Gong
285
2
0
27 Jan 2024
Sample-Optimal Locally Private Hypothesis Selection and the Provable Benefits of Interactivity
Annual Conference Computational Learning Theory (COLT), 2023
A. F. Pour
Hassan Ashtiani
S. Asoodeh
227
2
0
09 Dec 2023
The Bayesian Stability Zoo
Neural Information Processing Systems (NeurIPS), 2023
Shay Moran
Hilla Schefler
Jonathan Shafer
214
9
0
27 Oct 2023
Statistical Barriers to Affine-equivariant Estimation
Zihao Chen
Yeshwanth Cherapanamjeri
216
0
0
16 Oct 2023
Better and Simpler Lower Bounds for Differentially Private Statistical Estimation
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2023
Shyam Narayanan
FedML
271
13
0
10 Oct 2023
Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples
International Conference on Algorithmic Learning Theory (ALT), 2023
Mohammad Afzali
H. Ashtiani
Christopher Liaw
294
7
0
07 Sep 2023
Private Distribution Learning with Public Data: The View from Sample Compression
Neural Information Processing Systems (NeurIPS), 2023
Shai Ben-David
Alex Bie
C. Canonne
Gautam Kamath
Vikrant Singhal
298
16
0
11 Aug 2023
The Full Landscape of Robust Mean Testing: Sharp Separations between Oblivious and Adaptive Contamination
IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2023
C. Canonne
Samuel B. Hopkins
Jungshian Li
Allen Liu
Shyam Narayanan
AAML
209
8
0
18 Jul 2023
A Polynomial Time, Pure Differentially Private Estimator for Binary Product Distributions
International Conference on Algorithmic Learning Theory (ALT), 2023
Vikrant Singhal
529
9
0
13 Apr 2023
Polynomial Time and Private Learning of Unbounded Gaussian Mixture Models
International Conference on Machine Learning (ICML), 2023
Jamil Arbas
H. Ashtiani
Christopher Liaw
273
31
0
07 Mar 2023
On the Privacy-Robustness-Utility Trilemma in Distributed Learning
International Conference on Machine Learning (ICML), 2023
Youssef Allouah
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
193
31
0
09 Feb 2023
On Private and Robust Bandits
Neural Information Processing Systems (NeurIPS), 2023
Yulian Wu
Xingyu Zhou
Youming Tao
Haiyan Zhao
281
9
0
06 Feb 2023
From Robustness to Privacy and Back
International Conference on Machine Learning (ICML), 2023
Hilal Asi
Jonathan R. Ullman
Lydia Zakynthinou
214
37
0
03 Feb 2023
Near Optimal Private and Robust Linear Regression
Xiyang Liu
Prateek Jain
Weihao Kong
Sewoong Oh
A. Suggala
211
10
0
30 Jan 2023
Fast, Sample-Efficient, Affine-Invariant Private Mean and Covariance Estimation for Subgaussian Distributions
Annual Conference Computational Learning Theory (COLT), 2023
Gavin Brown
Samuel B. Hopkins
Adam D. Smith
FedML
318
22
0
28 Jan 2023
A Fast Algorithm for Adaptive Private Mean Estimation
John C. Duchi
Saminul Haque
Rohith Kuditipudi
FedML
159
16
0
17 Jan 2023
Privately Estimating a Gaussian: Efficient, Robust and Optimal
Daniel Alabi
Pravesh Kothari
Pranay Tankala
Prayaag Venkat
Fred Zhang
346
0
0
15 Dec 2022
Analyzing the Differentially Private Theil-Sen Estimator for Simple Linear Regression
Proceedings on Privacy Enhancing Technologies (PoPETs), 2022
Jayshree Sarathy
Salil P. Vadhan
271
8
0
27 Jul 2022
Differentially Private Sampling from Rashomon Sets, and the Universality of Langevin Diffusion for Convex Optimization
Arun Ganesh
Abhradeep Thakurta
Jalaj Upadhyay
358
1
0
04 Apr 2022
1