Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.05478
Cited By
Mul-GAD: a semi-supervised graph anomaly detection framework via aggregating multi-view information
11 December 2022
Zhiyuan Liu
Chunjie Cao
Jingzhang Sun
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Mul-GAD: a semi-supervised graph anomaly detection framework via aggregating multi-view information"
7 / 7 papers shown
Title
UniGAD: Unifying Multi-level Graph Anomaly Detection
Yiqing Lin
Jianheng Tang
Chenyi Zi
Haihong Zhao
Yuan Yao
Jia Li
24
0
0
10 Nov 2024
Graph Pre-Training Models Are Strong Anomaly Detectors
Jiashun Cheng
Zinan Zheng
Yang Liu
Jianheng Tang
H. Wang
Yu Rong
Jia Li
Fugee Tsung
24
1
0
24 Oct 2024
Deep Graph Anomaly Detection: A Survey and New Perspectives
Hezhe Qiao
Hanghang Tong
Bo An
Irwin King
Charu Aggarwal
Guansong Pang
27
5
0
16 Sep 2024
Towards Fair Graph Anomaly Detection: Problem, New Datasets, and Evaluation
Neng Kai Nigel Neo
Yeon-Chang Lee
Yiqiao Jin
Sang-Wook Kim
Srijan Kumar
36
4
0
25 Feb 2024
GADBench: Revisiting and Benchmarking Supervised Graph Anomaly Detection
Jianheng Tang
Fengrui Hua
Zi-Chao Gao
P. Zhao
Jia Li
14
23
0
21 Jun 2023
GAD-NR: Graph Anomaly Detection via Neighborhood Reconstruction
Amit Roy
Juan Shu
Jia Li
Carl Yang
Olivier Elshocht
Jeroen Smeets
P. Li
26
40
0
02 Jun 2023
Rethinking Graph Neural Networks for Anomaly Detection
Jianheng Tang
Jiajin Li
Zi-Chao Gao
Jia Li
67
193
0
31 May 2022
1