ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.07327
  4. Cited By
Tackling the Cocktail Fork Problem for Separation and Transcription of
  Real-World Soundtracks

Tackling the Cocktail Fork Problem for Separation and Transcription of Real-World Soundtracks

14 December 2022
Darius Petermann
G. Wichern
Aswin Shanmugam Subramanian
Zhong-Qiu Wang
Jonathan Le Roux
ArXivPDFHTML

Papers citing "Tackling the Cocktail Fork Problem for Separation and Transcription of Real-World Soundtracks"

7 / 7 papers shown
Title
The Sound Demixing Challenge 2023 $\unicode{x2013}$ Cinematic Demixing
  Track
The Sound Demixing Challenge 2023 \unicodex2013\unicode{x2013}\unicodex2013 Cinematic Demixing Track
Stefan Uhlich
Giorgio Fabbro
M. Hirano
Shusuke Takahashi
G. Wichern
...
R. Solovyev
A. Stempkovskiy
T. Habruseva
M. Sukhovei
Yuki Mitsufuji
37
11
0
14 Aug 2023
Better Together: Dialogue Separation and Voice Activity Detection for
  Audio Personalization in TV
Better Together: Dialogue Separation and Voice Activity Detection for Audio Personalization in TV
Matteo Torcoli
Emanuel Habets
19
3
0
23 Mar 2023
Multi-Task Audio Source Separation
Multi-Task Audio Source Separation
Lu Zhang
Chenxing Li
Feng Deng
Xiaorui Wang
33
8
0
14 Jul 2021
Speech enhancement aided end-to-end multi-task learning for voice
  activity detection
Speech enhancement aided end-to-end multi-task learning for voice activity detection
Xu Tan
Xiao-Lei Zhang
21
32
0
23 Oct 2020
A Framework for the Robust Evaluation of Sound Event Detection
A Framework for the Robust Evaluation of Sound Event Detection
Cagdas Bilen
Giacomo Ferroni
Francesco Tuveri
Juan Azcarreta
Sacha Krstulović
32
162
0
18 Oct 2019
Cutting Music Source Separation Some Slakh: A Dataset to Study the
  Impact of Training Data Quality and Quantity
Cutting Music Source Separation Some Slakh: A Dataset to Study the Impact of Training Data Quality and Quantity
Ethan Manilow
G. Wichern
Prem Seetharaman
Jonathan Le Roux
49
122
0
18 Sep 2019
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
948
20,549
0
17 Apr 2017
1