ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.08058
  4. Cited By
Learning a Fast 3D Spectral Approach to Object Segmentation and Tracking
  over Space and Time

Learning a Fast 3D Spectral Approach to Object Segmentation and Tracking over Space and Time

15 December 2022
Elena Burceanu
Marius Leordeanu
    VOS
ArXivPDFHTML

Papers citing "Learning a Fast 3D Spectral Approach to Object Segmentation and Tracking over Space and Time"

4 / 4 papers shown
Title
STEm-Seg: Spatio-temporal Embeddings for Instance Segmentation in Videos
STEm-Seg: Spatio-temporal Embeddings for Instance Segmentation in Videos
A. Athar
Sabarinath Mahadevan
Aljosa Osep
Laura Leal-Taixé
Bastian Leibe
VOS
70
169
0
18 Mar 2020
Siamese Box Adaptive Network for Visual Tracking
Siamese Box Adaptive Network for Visual Tracking
Zedu Chen
Bineng Zhong
Guorong Li
Shengping Zhang
Rongrong Ji
83
659
0
15 Mar 2020
Motion-Attentive Transition for Zero-Shot Video Object Segmentation
Motion-Attentive Transition for Zero-Shot Video Object Segmentation
Tianfei Zhou
Shunzhou Wang
Yi Zhou
Yazhou Yao
Jianwu Li
Ling Shao
VOS
122
189
0
09 Mar 2020
TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in
  the Wild
TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild
Matthias Muller
Adel Bibi
Silvio Giancola
Salman Al-Subaihi
Bernard Ghanem
203
785
0
28 Mar 2018
1