Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2212.09281
Cited By
Boosting Automatic COVID-19 Detection Performance with Self-Supervised Learning and Batch Knowledge Ensembling
19 December 2022
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
SSL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Boosting Automatic COVID-19 Detection Performance with Self-Supervised Learning and Batch Knowledge Ensembling"
7 / 7 papers shown
Title
RGMIM: Region-Guided Masked Image Modeling for Learning Meaningful Representation from X-Ray Images
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
10
0
0
01 Nov 2022
Dataset Distillation Using Parameter Pruning
Guang Li
Ren Togo
Takahiro Ogawa
Miki Haseyama
DD
31
20
0
29 Sep 2022
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
258
7,412
0
11 Nov 2021
MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer
Sachin Mehta
Mohammad Rastegari
ViT
189
1,200
0
05 Oct 2021
Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review
A. Shoeibi
Marjane Khodatars
M. Jafari
Navid Ghassemi
Delaram Sadeghi
...
Z. Sani
F. Khozeimeh
S. Nahavandi
U. Acharya
Juan M Gorriz
33
176
0
16 Jul 2020
Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks
A. Narin
Ceren Kaya
Ziynet Pamuk
67
1,759
0
24 Mar 2020
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
247
36,237
0
25 Aug 2016
1