ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.13523
  4. Cited By
S2S-WTV: Seismic Data Noise Attenuation Using Weighted Total Variation
  Regularized Self-Supervised Learning

S2S-WTV: Seismic Data Noise Attenuation Using Weighted Total Variation Regularized Self-Supervised Learning

27 December 2022
Zitai Xu
Yisi Luo
Bangyu Wu
Deyu Meng
ArXivPDFHTML

Papers citing "S2S-WTV: Seismic Data Noise Attenuation Using Weighted Total Variation Regularized Self-Supervised Learning"

3 / 3 papers shown
Title
Triply Laplacian Scale Mixture Modeling for Seismic Data Noise Suppression
Triply Laplacian Scale Mixture Modeling for Seismic Data Noise Suppression
Sirui Pan
Zhiyuan Zha
S. Wang
Yue Li
Zipei Fan
Gang Yan
Binh T. Nguyen
B. Wen
Ce Zhu
41
0
0
21 Feb 2025
NeurTV: Total Variation on the Neural Domain
NeurTV: Total Variation on the Neural Domain
Yisi Luo
Xile Zhao
Kai Ye
Deyu Meng
43
1
0
03 Jan 2025
View Blind-spot as Inpainting: Self-Supervised Denoising with Mask
  Guided Residual Convolution
View Blind-spot as Inpainting: Self-Supervised Denoising with Mask Guided Residual Convolution
Yuhongze Zhou
Liguang Zhou
Tin Lun Lam
Yangsheng Xu
SSL
22
2
0
10 Sep 2021
1