ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2212.14209
13
9

An Enhanced LiDAR-Inertial SLAM System for Robotics Localization and Mapping

29 December 2022
Kangcheng Liu
ArXivPDFHTML
Abstract

The LiDAR and inertial sensors based localization and mapping are of great significance for Unmanned Ground Vehicle related applications. In this work, we have developed an improved LiDAR-inertial localization and mapping system for unmanned ground vehicles, which is appropriate for versatile search and rescue applications. Compared with existing LiDAR-based localization and mapping systems such as LOAM, we have two major contributions: the first is the improvement of the robustness of particle swarm filter-based LiDAR SLAM, while the second is the loop closure methods developed for global optimization to improve the localization accuracy of the whole system. We demonstrate by experiments that the accuracy and robustness of the LiDAR SLAM system are both improved. Finally, we have done systematic experimental tests at the Hong Kong science park as well as other indoor or outdoor real complicated testing circumstances, which demonstrates the effectiveness and efficiency of our approach. It is demonstrated that our system has high accuracy, robustness, as well as efficiency. Our system is of great importance to the localization and mapping of the unmanned ground vehicle in an unknown environment.

View on arXiv
Comments on this paper