Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2301.00815
Cited By
NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical Development Patterns of Preterm Infants
1 January 2023
Chen Xue
Fan Wang
Yuanzhuo Zhu
Hui Li
Deyu Meng
Dinggang Shen
C. Lian
Re-assign community
ArXiv
PDF
HTML
Papers citing
"NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical Development Patterns of Preterm Infants"
6 / 6 papers shown
Title
SurfGNN: A robust surface-based prediction model with interpretability for coactivation maps of spatial and cortical features
Zhuoshuo Li
Jiong Zhang
Youbing Zeng
Jiaying Lin
Dan Zhang
Jianjia Zhang
Duan Xu
H. Kim
Bingguang Liu
Mengting Liu
19
0
0
05 Nov 2024
Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis
Hejie Cui
Wei Dai
Yanqiao Zhu
Xiaoxiao Li
Lifang He
Carl Yang
66
77
0
30 Jun 2022
Going Beyond Saliency Maps: Training Deep Models to Interpret Deep Models
Zixuan Liu
Ehsan Adeli
K. Pohl
Qingyu Zhao
FAtt
MedIm
16
8
0
16 Feb 2021
Explainability in Graph Neural Networks: A Taxonomic Survey
Hao Yuan
Haiyang Yu
Shurui Gui
Shuiwang Ji
162
589
0
31 Dec 2020
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
278
10,544
0
19 Feb 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
1